首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mono‐ and dinuclear hydridoborylene complexes were prepared by intermetallic borylene transfer from Group VI borylene or metalloborylene reagents. The hydride and borylene ligands were found to interact with each other significantly, although the boron ligand retains much of its former borylene character. Zero‐valent platinum fragments were successively added to the dinuclear hydridoborylene complexes, resulting in tri‐ and tetranuclear borido complexes, in which the B? H interaction has been lost, and the hydride ligands now bridge two metal centers. The complexes were studied spectroscopically, crystallographically, and by DFT methods, and the unusual bonding situation in the M? B? H triangles of hydridoborylene complexes were evaluated.  相似文献   

2.
New metal‐only Lewis pairs (MOLPs: Ru→Cr and Os→Cr) are prepared by the insertion of a zerovalent ruthenium or osmium complex into chromium–boron double bonds of borylene complexes. The reaction creates new borylene complexes (the first ever for osmium), and is crystallization‐controlled; re‐dissolving the complexes results in regeneration of the starting materials. A mechanism is proposed based on DFT calculations, along with a computational study of the unusual MOLPs.  相似文献   

3.
The reaction of the salts K[Ru(CO)3(PMe3)(SiR3)] (R=Me, Et) with Br2BDur or Cl2BDur (Dur=2,3,5,6‐Me4C6H) leads to both boryl and borylene complexes of divalent ruthenium, the former through simple salt elimination and the latter through subsequent CO loss and 1,2‐halide shift. The balance of products can be altered by varying the reaction conditions; boryl complexes can be favored by the addition of CO, and borylene complexes by removal of CO under vacuum. All of these products are in competition with the corresponding (aryl)(halo)(trialkylsilyl)borane, a reductive elimination product. The RuII borylene products and the mechanisms that form them are distinctly different from the analogous reactions with iron, which lead to low‐valent borylene complexes, highlighting fundamental differences in oxidation state preferences between iron and ruthenium.  相似文献   

4.
The Lewis acidity of [(eta5-C5R5)Fe(CO)2(BX2)] (1: R = H, X = Cl) and the robust nature of the constituent Fe--B bond have been demonstrated by reaction with 4-methylpyridine to yield the corresponding Lewis acid-base adduct. These properties have subsequently been utilised in the construction of heterodinuclear bridging borylene, bridging boryl and mu(2)-boride complexes from analogues 3 (R = Me, X = Br) and 5 (R = Me, X = Cl). All the bimetallic species so formed exhibited unprecedented coordination modes for boron.  相似文献   

5.
Boryl, borylene, and base‐stabilized borylene complexes of manganese and iron undergo a range of different reactions when treated with isonitriles including single, double, and partial isonitrile insertions into metal?boron bonds, ring formation, isonitrile coupling, and the liberation of new monovalent boron species. Two of the resulting cyclic species have also been found to react selectively with anhydrous HCl to form ring‐opened products. The diverse isonitrile‐promoted reactivity of transition‐metal–boron compounds has been explored computationally.  相似文献   

6.
The synthesis of base‐stabilized boryl and borylene complexes is reported. An N‐heterocyclic carbene (NHC)‐stabilized iron–dihydroboryl complex was prepared by two different routes including methane liberation and salt elimination. A range of base‐stabilized iron–dichloroboryl complexes was prepared by addition of Lewis bases to boryl complexes. Base‐stabilized, cationic monochloroborylene complexes were synthesized from these boryl complexes by halide abstraction by using weakly coordinating anions.  相似文献   

7.
A series of iridium complexes ( 1 – 5 ), which consist of two 2‐(2,4‐difluorophenyl)pyridine (dfppy)‐based primary ligands and one pyridinylphosphinate ancillary ligand, have been investigated theoretically for screening highly efficient deep‐blue light‐emitting materials. Compared with the reported dfppy‐based emitter 1 , the designed iridium complexes 3 – 5 with the introduction of a stronger electron‐withdrawing (–CN, –CF3 , or o‐carborane) group and a bulky electron‐donating (tert‐butyl) group in dfppy ligands can be achieved to display the emission peaks at 443, 442, and 447 nm, respectively. The electronic structures, absorption and emission properties, radiative and nonradiative processes of their excited states, and charge injection and transport properties of the iridium complexes are analyzed in detail. The calculated results show that designed iridium complexes have comparable radiative and nonradiative rate constants with 1 , and are expected to have similar quantum efficiency with 1 . Meanwhile, these designed complexes keep the advantages of the charge transport properties of 1 , indicating that they are potential iridium complexes for efficient deep‐blue phosphorescence. This work provides more in‐depth understanding the structure–property relationship of dfppy‐based iridium complexes, and shed lights on molecular design for deep‐blue phosphorescent metal complexes.  相似文献   

8.
The complete scission of the carbon–oxygen bond of carbon monoxide, while frequently observed on bulk metals and with bimetallic and cluster transition metal complexes, is unknown with monometallic systems. Reaction of a zerovalent iron bis(borylene) complex with a cyclic (alkyl)(amino)carbene revealed a highly selective intramolecular cleavage of the C?O bond of a carbonyl ligand at room temperature, leading to the formation of a highly unusual iron complex containing a base‐stabilized (bora)alkylideneborane ligand. DFT investigation of the reaction mechanism suggested that the two Lewis acidic borylene boron atoms cooperate to cleave the C?O multiple bond.  相似文献   

9.
A series of mononuclear half‐sandwich cyclometallated iridium complexes with Schiff base ligands were synthesized in good yields. Five air‐stable C,N‐chelate mode complexes were obtained smoothly through metal‐mediated C─H bond activation. Treatments of dimeric metal complexes [Cp*IrCl2]2 with ligands L1–L5 afforded the corresponding C,N‐chelate mononuclear half‐sandwich iridium(III) complexes 1 – 5 . These iridium complexes exhibit high catalytic activity for norbornene polymerization. Both steric and electronic effects of the substituted groups have influences on the behaviors of the polymerization process. All complexes were characterized using infrared and NMR spectroscopies and elemental analysis. Molecular structures of complexes 1 , 2 and 5 were further confirmed using single‐crystal X‐ray analysis.  相似文献   

10.
Diene to be made: By tuning the size of acetylenic substituents, 1,4-diboracyclohexadiene and unprecedented 1,4-dibora-1,3-butadiene complexes were generated in a controlled manner by borylene transfer from an iron bis(borylene) complex to alkynes (see scheme).  相似文献   

11.
Sublimable cationic iridium(III) complexes consisting of light‐emitting coordinated iridium(III) cations and nonluminous negative counter‐ions, show excellent photophysical properties, superior electrochemical behaviors and high thermal stabilities, therefore have emerged as a new library of phosphorescent materials for various organic optoelectronic devices. Here we summarize and highlight the recent progress in sublimable cationic iridium(III) complexes, regarding the material design strategies, synthetic routes, photoluminescent characteristics in both solutions and neat films, together with the current utilization in organic light‐emitting diodes based on the emissive material layers fabricated by vacuum evaporation deposition. Finally, we present a brief outlook thereon, indicating the great promise and brilliant application prospect of sublimable cationic iridium(III) complexes in future flat‐panel display and solid‐state lighting technology.  相似文献   

12.
13.
The addition of borylenes (RB) to prototypical carbon?carbon multiple bonds (ethyne, ethene) and the insertion into a C?H bond of methane involves weakly bound van der Waals complexes of the reaction partners according to computational chemistry methods. Geometries of all complexes were optimized using spin‐component scaled second‐order Møller–Plesset perturbation theory (SCS‐MP2) in combination with a quadruple‐ζ (def2‐QZVP) basis set. Energies were further refined using the coupled‐cluster (CCSD(T)) method in combination with basis sets up to quadruple‐ζ quality (def2‐QZVP and aug‐cc‐pVTZ). All of the complexes of borylenes studied correspond to shallow minima on their potential‐energy surfaces. Borylene complexes with ethyne are the most stable and those with methane are the least stable ones. Aminoborylene complexes BNHR with ethyne and ethene are stabilized mainly by NH ??? π interactions. Symmetry‐adapted perturbation theory (SAPT) was performed to analyze the nature of the interaction between borylene molecules and hydrocarbons. Most of the ethyne complexes are dominated by electrostatic interactions, whereas for most of the ethene and all of the methane complexes the interaction is mainly dispersive.  相似文献   

14.
The steric and electronic properties of aryl substituents in monoaryl borohydrides (Li[ArBH3]) and dihydroboranes were systematically varied and their reactions with [Ru(PCy3)2HCl(H2)] (Cy: cyclohexyl) were studied, resulting in bis(σ)-borane or terminal borylene complexes of ruthenium. These variations allowed for the investigation of the factors involved in the activation of dihydroboranes in the synthesis of terminal borylene complexes. The complexes were studied by multinuclear NMR spectroscopy, mass spectrometry, X-ray diffraction analysis, and density functional theory (DFT) calculations. The experimental and computational results suggest that the ortho-substitution of the aryl groups is necessary for the formation of terminal borylene complexes.  相似文献   

15.
Room temperature photolysis of a triply‐bridged borylene complex, [(μ3‐BH)(Cp*RuCO)2(μ‐CO)Fe(CO)3] ( 1 a ; Cp*=C5Me5), in the presence of a series of alkynes, 1,2‐diphenylethyne, 1‐phenyl‐1‐propyne, and 2‐butyne led to the isolation of unprecedented vinyl‐borylene complexes (Z)‐[(Cp*RuCO)2(μ‐CO)B(CR)(CHR′)] ( 2 : R, R′=Ph; 3 : R=Me, R′=Ph; 4 : R, R′=Me). This reaction permits a hydroboration of alkyne through an anti ‐ Markovnikov addition. In stark contrast, in the presence of phenylacetylene, a metallacarborane, closo‐[1,2‐(Cp*Ru)2(μ‐CO)2{Fe2(CO)5}‐4‐Ph‐4,5‐C2BH2] ( 5 a) , is formed. A plausible mechanism has been proposed for the formation of vinyl‐borylene complexes, which is supported by density functional theory (DFT) methods. Furthermore, the calculated 11B NMR chemical shifts accurately reflect the experimentally measured shifts. All the new compounds have been characterized in solution by mass spectrometry and IR, 1H, 11B, and 13C NMR spectroscopies and the structural types were unequivocally established by crystallographic analysis of 2 , 5 a , and 5 b .  相似文献   

16.
Density functional theory calculations have been performed for the terminal borylene, alylene, and gallylene complexes [(η(5)-C(5)H(5))(CO)(3)M(ENR(2))] (M = V, Nb; E = B, Al, Ga; R = CH(3), SiH(3), CMe(3), SiMe(3)) using the exchange correlation functional BP86. The calculated geometry parameters of vanadium borylene complex [(η(5)-C(5)H(5))(CO)(3)V{BN(SiMe(3))(2)}] are in excellent agreement with their available experimental values. The M-B bonds in the borylene complexes have partial M-B double-bond character, and the B-N bonds are nearly B═N double bonds. On the other hand, the M-E bonds in the studied metal alylene and gallylene complexes represent M-E single bonds with a very small M-E π-orbital contribution, and the Al-N and Ga-N bonds in the complexes have partial double-bond character. The orbital interactions between metal and ENR(2) in [(η(5)-C(5)H(5))(CO)(3)M(ENR(2))] arise mainly from M ← ENR(2) σ donation. The π-bonding contribution is, in all complexes, much smaller. The contributions of the electrostatic interactions ΔE(elstat) are significantly larger in all borylene, alylene, and gallylene complexes than the covalent bonding ΔE(orb); that is, the M-ENR(2) bonding in the complexes has a greater degree of ionic character.  相似文献   

17.
The borylene–carbonyl moiety in [bis(silylene)B(CO)][WBr(CO)5] shows diverse reactivity. Reduction, migration, and complete cleavage of CO have been observed at the boron center, leading to the formation of new types of borylenes. These reactions not only serve as new methods for the synthesis of various stable borylenes, but also demonstrate that main‐group‐element compounds can mimic the behavior of transition‐metal complexes.  相似文献   

18.
Lisowski J 《Inorganic chemistry》2011,50(12):5567-5576
The controlled formation of lanthanide(III) dinuclear μ-hydroxo-bridged [Ln(2)L(2)(μ-OH)(2)X(2)](n+) complexes (where X = H(2)O, NO(3)(-), or Cl(-)) of the enantiopure chiral macrocycle L is reported. The (1)H and (13)C NMR resonances of these complexes have been assigned on the basis of COSY, NOESY, TOCSY, and HMQC spectra. The observed NOE connectivities confirm that the dimeric solid-state structure is retained in solution. The enantiomeric nature of the obtained chiral complexes and binding of hydroxide anions are reflected in their CD spectra. The formation of the dimeric complexes is accompanied by a complete enantiomeric self-recognition of the chiral macrocyclic units. The reaction of NaOH with a mixture of two different mononuclear lanthanide(III) complexes, [Ln(1)L](3+) and [Ln(2)L](3+), results in formation of the heterodinuclear [Ln(1)Ln(2)L(2)(μ-OH)(2)X(2)](n+) complexes as well as the corresponding homodinuclear complexes. The formation of the heterodinuclear complex is directly confirmed by the NOESY spectra of [EuLuL(2)(μ-OH)(2)(H(2)O)(2)](4+), which reveal close contacts between the macrocyclic unit containing the Eu(III) ion and the macrocyclic unit containing the Lu(III) ion. While the relative amounts of homo- and heterodinuclear complexes are statistical for the two lanthanide(III) ions of similar radii, a clear preference for the formation of heterodinuclear species is observed when the two mononuclear complexes contain lanthanide(III) ions of markedly different sizes, e.g., La(III) and Yb(III). The formation of heterodinuclear complexes is accompanied by the self-sorting of the chiral macrocyclic units based on their chirality. The reactions of NaOH with a pair of homochiral or racemic mononuclear complexes, [Ln(1)L(RRRR)](3+)/[Ln(2)L(RRRR)](3+), [Ln(1)L(SSSS)](3+)/[Ln(2)L(SSSS)](3+), or [Ln(1)L(rac)](3+)/[Ln(2)L(rac)](3+), results in mixtures of homochiral, homodinuclear and homochiral, heterodinuclear complexes. On the contrary, no heterochiral, heterodinuclear complexes [Ln(1)L(RRRR)Ln(2)L(SSSS)(μ-OH)(2)X(2)](n+) are formed in the reactions of two different mononuclear complexes of opposite chirality.  相似文献   

19.
We successfully developed phosphorescent cyclometallated iridium‐containing metallopolymers, which are near‐red luminescent iridium complexes bearing phosphine‐containing copolymers used as polymer ligands, and investigated their photoluminescence and electroluminescence behavior. The phosphine copolymer ligand made from methyl methacrylate and 4‐styryldiphenylphosphine can be used as an anchor, which coordinates luminescent iridium units to form the metallopolymer easily. Organic light‐emitting diodes were fabricated from the metallopolymer and its nonpolymer analog, [IrCl(piq)2PPh3]. These complexes exhibited quite similar luminescence behavior, except for emission from the free‐phosphine‐units in the polymer side chain and their energy‐transferring properties from host to guest materials. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4366–4378, 2009  相似文献   

20.
The borylene–carbonyl moiety in [bis(silylene)B(CO)][WBr(CO)5] shows diverse reactivity. Reduction, migration, and complete cleavage of CO have been observed at the boron center, leading to the formation of new types of borylenes. These reactions not only serve as new methods for the synthesis of various stable borylenes, but also demonstrate that main‐group‐element compounds can mimic the behavior of transition‐metal complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号