首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The bengamides, sponge‐derived natural products that have been characterized as inhibitors of methionine aminopeptidases (MetAPs), have been intensively investigated as anticancer compounds. We embarked on a multidisciplinary project to supply bengamides by fermentation of the terrestrial myxobacterium M. virescens, decipher their biosynthesis, and optimize their properties as drug leads. The characterization of the biosynthetic pathway revealed that bacterial resistance to bengamides is conferred by Leu 154 of the myxobacterial MetAP protein, and enabled transfer of the entire gene cluster into the more suitable production host M. xanthus DK1622. A combination of semisynthesis of microbially derived bengamides and total synthesis resulted in an optimized derivative that combined high cellular potency in the nanomolar range with high metabolic stability, which translated to an improved half‐life in mice and antitumor efficacy in a melanoma mouse model.  相似文献   

3.
In an antibiotic lead discovery program, the known strain Streptomyces armeniacus DSM19369 has been found to produce three new natural products when cultivated on a malt‐containing medium. The challenging structural elucidation of the isolated compounds was achieved by using three independent methods, that is, chemical degradation followed by NMR spectroscopy, a computer‐assisted structure prediction algorithm, and X‐ray crystallography. The compounds, named armeniaspirol A–C ( 2 – 4 ), exhibit a compact, hitherto unprecedented chlorinated spiro[4.4]non‐8‐ene scaffold. Labeling experiments with [1‐13C] acetate, [1,2‐13C2] acetate, and [U‐13C] proline suggest a biosynthesis through a rare two‐chain mechanism. Armeniaspirols displayed moderate to high in vitro activities against Gram‐positive pathogens such as methicillin‐resistant S. aureus (MRSA) or vancomycin resistant E. faecium (VRE). As analogue 2 was active in vivo in an MRSA sepsis model, and showed no development of resistance in a serial passaging experiment, it represents a new antibiotic lead structure.  相似文献   

4.
5.
Six new ( 2 , 4 – 8 ) and two known polyketides with a basic structure of an anthraquinone‐xanthone were isolated from mycelia and culture broth of the fungus Engyodontium album strain LF069. The structures and relative configurations of these compounds were established by spectroscopic means, and their absolute configurations were defined mainly by comparison of quantum chemical TDDFT calculated and experimental ECD spectra. Compounds 2 and 4 – 8 were given the trivial names engyodontochone A ( 2 ) and B–F ( 4 – 8 ). Compounds 5 – 8 represent the first example of a 23,28 seco‐beticolin carbon skeleton. The relative and absolute configurations of two known substances JBIR‐97/98 ( 1 ) and JBIR‐99 ( 3 ) were determined for the first time. All isolated compounds were subjected to bioactivity assays. Compounds 1 – 4 exhibited inhibitory activity against methicillin‐resistant Staphylococcus aureus (MRSA) that was 10‐fold stronger than chloramphenicol.  相似文献   

6.
The COVID-19 pandemic has caused millions of fatalities since 2019. Despite the availability of vaccines for this disease, new strains are causing rapid ailment and are a continuous threat to vaccine efficacy. Here, molecular docking and simulations identify strong inhibitors of the allosteric site of the SARS-CoV-2 virus RNA dependent RNA polymerase (RdRp). More than one hundred different flavonoids were docked with the SARS-CoV-2 RdRp allosteric site through computational screening. The three top hits were Naringoside, Myricetin and Aureusidin 4,6-diglucoside. Simulation analyses confirmed that they are in constant contact during the simulation time course and have strong association with the enzyme’s allosteric site. Absorption, distribution, metabolism, excretion and toxicity (ADMET) data provided medicinal information of these top three hits. They had good human intestinal absorption (HIA) concentrations and were non-toxic. Due to high mutation rates in the active sites of the viral enzyme, these new allosteric site inhibitors offer opportunities to drug SARS-CoV-2 RdRp. These results provide new information for the design of novel allosteric inhibitors against SARS-CoV-2 RdRp.  相似文献   

7.
8.
Albicidin is a recently described natural product that strongly inhibits bacterial DNA gyrase. The pronounced activity, particularly against Gram-negative bacteria, turns it into a promising lead structure for an antibacterial drug. Hence, structure–activity relationship studies are key for the in-depth understanding of structural features/moieties affecting gyrase inhibition, antibacterial activity and overcoming resistance. The 27 newly synthesized albicidins give profound insights into possibilities for variations of the C-terminus. Furthermore, in the present study, a novel derivative has been identified as overcoming resistance posed by the Klebsiella-protease AlbD. Structural modifications include, for example, azahistidine replacing the previous instable cyanoalanine as the central amino acid, as well as a triazole amide bond isostere between building blocks D and E.  相似文献   

9.
10.
The rhytidenone family comprises spirobisnaphthalene natural products isolated from the mangrove endophytic fungus Rhytidhysteron rufulum AS21B. The biomimetic synthesis of rhytidenone A was achieved by a Michael reaction/aldol/lactonization cascade in a single step from the proposed biosynthetic precursor rhytidenone F. Moreover, the mode of action of the highly cytotoxic rhytidenone F was investigated. The pulldown assay coupled with mass spectrometry analysis revealed the target protein PA28γ is covalently attached to rhytidenone F at the Cys92 residue. The interactions of rhytidenone F with PA28γ lead to the accumulation of p53, which is an essential tumor suppressor in humans. Consequently, the Fas‐dependent signaling pathway is activated to initiate cellular apoptosis. These studies have identified the first small‐molecule inhibitor targeting PA28γ, suggesting rhytidenone F may serve as a promising natural product lead for future anticancer drug development.  相似文献   

11.
12.
13.
14.
The natural product family of fusicoccanes are stabilizers of 14‐3‐3 mediated protein–protein interactions (PPIs), some of which possess antitumor activity. In this study, the first use of molecular dynamics (MD) to rationally design PPI stabilizers with increased potency is presented. Synthesis of a focused library, with subsequent characterization by fluorescence polarization, mutational studies, and X‐ray crystallography confirmed the power of the MD‐based design approach, revealing the potential for an additional hydrogen bond with the 14‐3‐3 protein to lead to significantly increased potency. Additionally, these compounds exert their action in a cellular environment with increased potency. The newly found polar interaction could provide an anchoring point for new small‐molecule PPI stabilizers. These results facilitate the development of fusicoccanes towards drugs or tool compounds, as well as allowing the study of the fundamental principles behind PPI stabilization.  相似文献   

15.
The first synthesis of the anti‐TB cyclic peptide callyaerin A ( 1 ), containing a rare (Z)‐2,3‐diaminoacrylamide bridging motif, is reported. Fmoc‐formylglycine‐diethylacetal was used as a masked equivalent of formylglycine in the synthesis of the linear precursor to 1 . Intramolecular cyclization between the formylglycine residue and the N‐terminal amine in the linear peptide precursor afforded the macrocyclic natural product 1 . Synthetic 1 possessed potent anti‐TB activity (MIC100=32 μm ) while its all‐amide congener was inactive. Variable‐temperature NMR studies of both the natural product and its all‐amide analogue revealed the extraordinary rigidity imposed by this diaminoacrylamide unit on peptide conformation. The work reported herein pinpoints the intrinsic role that the (Z)‐2,3‐diaminoacrylamide moiety confers on peptide bioactivity.  相似文献   

16.
A full account on the synthesis of the antibiotic natural product biphenomycin B and several derivatives is reported, which employs a Suzuki coupling reaction of a free carboxylic acid and macrolactam formation as key transformations. Liberal exchange of the central amino acid was demonstrated. This procedure gave derivatives to study the influence of the polar side chain of the central amino acids on translation inhibition.  相似文献   

17.
Targeting acquired drug resistance represents the major challenge in the treatment of EGFR‐driven non‐small‐cell lung cancer (NSCLC). Herein, we describe the structure‐based design, synthesis, and biological evaluation of a novel class of covalent EGFR inhibitors that exhibit excellent inhibition of EGFR‐mutant drug‐resistant cells. Protein X‐ray crystallography combined with detailed kinetic studies led to a deeper understanding of the mode of inhibition of EGFR‐T790M and provided insight into the key principles for effective inhibition of the recently discovered tertiary mutation at EGFR‐C797S.  相似文献   

18.
19.
Divergent and concise total syntheses of two lycopodium alkaloids, lyconadins A and C have been developed. The synthesis of lyconadin A, having potent neurotrophic activity, features an efficient one‐pot ketal removal and formal aza‐[4+2] cyclization to form the cagelike core structure. A tandem ketal removal/Mannich reaction was developed to build the tricyclic structure of lyconadin C. Both lyconadins A and C were synthesized from a pivotal intermediate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号