首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The prerequisites for forensic confirmatory analysis by LC/MS/MS with respect to European Union guidelines are chromatographic separation, a minimum number of two MS/MS transitions to obtain the required identification points and predefined thresholds for the variability of the relative intensities of the MS/MS transitions (MRM transitions) in samples and reference standards. In the present study, a fast, sensitive and robust method to quantify tramadol, chlorpheniramine, dextromethorphan and their major metabolites, O‐desmethyltramadol, dsmethyl‐chlorpheniramine and dextrophan, respectively, in human plasma using ibuprofen as internal standard (IS) is described. The analytes and the IS were extracted from plasma by a liquid–liquid extraction method using ethyl acetate–diethyl‐ether (1:1). Extracted samples were analyzed by ultra‐high‐performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (UHPLC‐ESI‐MS/MS). Chromatographic separation was performed by pumping the mobile phase containing acetonitrile, water and formic acid (89.2:11.7:0.1) for 2.0 min at a flow rate of 0.25 μL/min into a Hypersil‐Gold C18 column, 20 × 2.0 mm (1.9 µm) from Thermoscientific, New York, USA. The calibration curve was linear for the six analytes. The intraday precision (RSD) and accuracy (RE) of the method were 3–9.8 and ?1.7–4.5%, respectively. The analytical procedure herein described was used to assess the pharmacokinetics of the analytes in 24 healthy volunteers after a single oral dose containing 50 mg of tramadol hydrochloride, 3 mg chlorpheniramine maleate and 15 mg of dextromethorphan hydrobromide. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
An accurate and sensitive LC–MS/MS method for determining thalidomide, 5‐hydroxy thalidomide and 5′‐hydroxy thalidomide in human plasma was developed and validated using umbelliferone as an internal standard. The analytes were extracted from plasma (100 μL) by liquid–liquid extraction with ethyl acetate and then separated on a BETASIL C18 column (4.6 × 150 mm, 5 μm) with mobile phase composed of methanol–water containing 0.1% formic acid (70:30, v/v) in isocratic mode at a flow rate of 0.5 mL/min. The detection was performed using an API triple quadrupole mass spectrometer in atmospheric pressure chemical ionization mode. The precursor‐to‐product ion transitions m/z 259.1 → 186.1 for thalidomide, m/z 273.2 → 161.3 for 5‐hydroxy thalidomide, m/z 273.2 → 146.1 for 5′‐hydroxy thalidomide and m/z 163.1 → 107.1 for umbelliferone (internal standard, IS) were used for quantification. The calibration curves were obtained in the concentrations of 10.0–2000.0 ng/mL for thalidomide, 0.2–50.0 ng/mL for 5‐hydroxy thalidomide and 1.0–200.0 ng/mL for 5′‐hydroxy thalidomide. The method was validated with respect to linear, within‐ and between‐batch precision and accuracy, extraction recovery, matrix effect and stability. Then it was successfully applied to estimate the concentration of thalidomide, 5‐hydroxy thalidomide and 5′‐hydroxy thalidomide in plasma samples collected from Crohn's disease patients after a single oral administration of thalidomide 100 mg.  相似文献   

3.
One of the many issues of designer drugs of abuse like synthetic cannabinoids (SCs) such as JWH‐018 is that details on their metabolism has yet to be fully elucidated and that multiple metabolites exist. The presence of isomeric compounds poses further challenges in their identification. Our group has previously shown the effectiveness of gas chromatography‐electron ionization‐tandem mass spectrometry (GC‐EI‐MS/MS) in the mass spectrometric differentiation of the positional isomers of the naphthoylindole‐type SC JWH‐081, and speculated that the same approach could be used for the metabolite isomers. Using JWH‐018 as a model SC, the aim of this study was to differentiate the positional isomers of its hydroxyindole metabolites by GC‐MS/MS. Standard compounds of JWH‐018 and its hydroxyindole metabolite positional isomers were first analyzed by GC‐EI‐MS in full scan mode, which was only able to differentiate the 4‐hydroxyindole isomer. Further GC‐MS/MS analysis was performed by selecting m/z 302 as the precursor ion. All four isomers produced characteristic product ions that enabled the differentiation between them. Using these ions, MRM analysis was performed on the urine of JWH‐018 administered mice and determined the hydroxyl positions to be at the 6‐position on the indole ring. GC‐EI‐MS/MS allowed for the regioisomeric differentiation of the hydroxyindole metabolite isomers of JWH‐018. Furthermore, analysis of the fragmentation patterns suggests that the present method has high potential to be extended to hydroxyindole metabolites of other naphthoylindole type SCs in identifying the position of the hydroxyl group on the indole ring. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
A highly sensitive, rapid assay method has been developed and validated for the simultaneous estimation of tolmetin (TMT) and MED5 in human plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. A simple solid‐phase extraction process was used to extract TMT and MED5 along with mycophenolic acid (internal standard, IS) from human plasma. Chromatographic separation was achieved with 0.2% formic acid–acetonitrile (25:75, v/v) at a flow rate of 0.50 mL/min on an X‐Terra RP18 column with a total run time of 2.5 min. The MS/MS ion transitions monitored were 258.1 → 119.0 for TMT, 315.1 → 119.0 for MED5 and 321.2 → 207.0 for IS. Method validation and clinical sample analysis were performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 20 ng/mL and the linearity was observed from 20 to 2000 ng/mL, for both the anlaytes. The intra‐day and inter‐day precisions were in the range 3.27–4.50 and 5.32–8.18%, respectively for TMT and 4.27–5.68 and 5.32–8.85%, respectively for MED5. This novel method has been applied to a clinical pharmacokinetic study. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A simple, specific and sensitive LC‐MS/MS method was developed and validated for the simultaneous determination of metoprolol (MET), α‐hydroxymetoprolol (HMT) and O‐desmethylmetoprolol (DMT) in rat plasma. The plasma samples were prepared by protein precipitation, then the separation of the analytes was performed on an Agilent HC‐C18 column (4.6 × 250 mm, 5 µm) at a flow rate of 1.0 mL/min, and post‐column splitting (1:4) was used to give optimal interface flow rates (0.2 mL/min) for MS detection; the total run time was 8.5 min. Mass spectrometric detection was achieved using a triple‐quadrupole mass spectrometer equipped with an electrospray source interface in positive ionization mode. The method was fully validated in terms of selectivity, linearity, accuracy, precision, stability, matrix effect and recovery over a concentration range of 3.42–7000 ng/mL for MET, 2.05‐4200 ng/mL for HMT and 1.95‐4000 ng/mL for DMT. The analytical method was successfully applied to herb–drug interaction study of MET and breviscapine after administration of breviscapine (12.5 mg/kg) and MET (40 mg/kg). The results suggested that breviscapine have negligible effect on pharmacokinetics of MET in rats; the information may be beneficial for the application of breviscapine in combination with MET in clinical therapy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
A rapid, simple, sensitive and selective LC‐MS/MS method has been developed and validated for quantification of nifedipine (NF) and atenolol (AT) in human plasma (250 μL). The analytical procedure involves a one‐step liquid–liquid extraction method using carbamazepine as an internal standard (IS). The chromatographic resolution was achieved on a Hypurity Advance C18 column using an isocratic mobile phase consisting of 5 mm ammonium acetate–acetonitrile (15:85, v/v) at flow rate of 1.0 mL/min. The LC‐MS/MS was operated under the multiple‐reaction monitoring mode using electrospray ionization. The total run time of analysis was 2 min and elution of NF, AT and IS occurred at 0.79, 1.04 and 0.76 min, respectively. A detailed method validation was performed as per the FDA guidelines and the standard curves found to be linear in the range of 1.02–101 ng/mL for NF and 5.05–503 ng/mL for AT, with a coefficient of correlation of ≥0.99 for both the drugs. NF and AT were found to be stable in a battery of stability studies, viz. bench‐top, auto‐sampler and repeated freeze–thaw cycles. The validated assay method was successfully applied to a pharmacokinetic study in humans. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
A simple, specific, sensitive and rapid LC‐ESI‐MS/MS method has been developed and validated for the quantification of 4‐methylpyrazole in dog plasma using N‐methylnicotinamide‐d4 as an internal standard (IS) as per regulatory guidelines. Sample preparation was accomplished through a simple protein precipitation. Chromatographic separation of 4‐methylpyrazole and the IS was performed on a monolithic (Chromolith RP18e) column using an isocratic mobile phase comprising 0.2% formic acid in water and acetonitrile (20:80, v/v) at a flow rate of 1.0 mL/min. Elution of 4‐methylpyrazole and the IS occurred at ~1.60 and 1.56 min, respectively. The total chromatographic run time was 3.2 min. A linear response function was established in the concentration range of 4.96–4955 ng/mL. The intra‐ and inter‐day accuracy and precision were in the ranges 1.81–12.9 and 3.80–11.1%, respectively. This novel method has been applied to a pharmacokinetic study in dogs.  相似文献   

8.
An improved, simple and highly sensitive LC‐MS/MS method has been developed and validated for quantification of febuxostat with 100 μL human plasma using febuxostat‐d7 as an internal standard (IS) according to regulatory guidelines. The analyte and IS were extracted from human plasma via liquid–liquid extraction using diethyl ether. The chromatographic separation was achieved on a Zorbax C18 column using a mixture of acetonitrile and 5 mm ammonium formate (60:40, v/v) as the mobile phase at a flow rate of 0.5 mL/min. The total run time was 5.0 min and the elution of febuxostat and IS occurred at 1.0 and 1.5 min, respectively. A linear response function was established for the range of concentrations 1–6000 ng/mL (r > 0.99). The precursor to product ion transitions monitored for febuxostat and IS were m/z 317.1 → 261.1 and 324.2 → 262.1, respectively. The intra‐ and inter‐day precisions (%RSD) were within 1.29–9.19 and 2.85–7.69%, respectively. The proposed method was successfully applied to pharmacokinetic studies in humans. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
A new, fast and simple analytical method that is able to identify and quantify simultaneously 17 steroid hormones and metabolites (pregnenolone, 17‐OH‐pregnenolone, progesterone, 17‐OH‐progesterone, androsterone, androstenedione, dehydroepiandrosterone, dehydroepiandrosterone sulfate, testosterone, cortisol, corticosterone, aldosterone, 11‐deoxycortisol, 11‐deoxycorticosterone, dihydrotestosterone, estrone and estradiol) has been developed in equine serum using the ultra‐high‐performance liquid chromatography–tandem mass spectrometry technique. A total of 400 µl of sample was deproteinized with 1000 µl of acetonitrile, evaporated, restored with 50 µl of a solution of 25% methanol and injected in ultra‐high‐performance liquid chromatography–tandem mass spectrometry triple quadrupole. The recovery percentage obtained by spiking the matrix at two different concentrations with a standard mixture of steroid hormones was in all cases higher than 85.60% and with the percentage of coefficient of variation lower than 8.37%. The range of the correlation coefficients of the calibration curves of the analyzed compounds was 0.9922–0.9986, and the limits of detection and limits of quantification were in the range of 0.002–2 and 0.0055–5.5 ng ml−1, respectively. The detected limit of quantification for testosterone (i.e. 50 pg ml−1) is twofold lower with respect to its threshold admitted in geldings plasma (100 pg ml−1 free testosterone). The high sensitivity and the quantitative aspect of the method permitted to detect most of the steroids in equine serum. Once validated, the method was used to quantify 17 steroid hormones in mare, stallion and gelding serum samples. The main steroids detected were corticosterone (range 37.25–51.26 ng ml−1) and cortisol (range 32.57–52.24 ng ml−1), followed by 17‐OH‐pregnenolone, dihydrotestosterone and pregnenolone. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
We present a validated liquid chromatography with tandem mass spectrometry method for simultaneous determination of 20‐(S )‐protopanaxatriol and its two oxidative stereoisomeric metabolites (20S ,24S )‐epoxy‐dammarane‐3,6,12,25‐tetraol (M1) and (20S ,24R )‐epoxy‐dammarane‐3,6,12,25‐tetraol (M2) in rat plasma. 20‐(S )‐Protopanaxatriol, M1, and M2 were extracted with methanol and separated on an ACQUITY HSS T3 column. The mass spectrometry detection was accomplished in selected reaction monitoring mode with precursor‐to‐product ion transitions of m/z 493.4→143.1 for M1 and M2, m/z 475.4→391.3 for 20‐(S )‐protopanaxatriol, and m/z 459.4→375.3 for 20‐(S )‐protopanaxadiol (internal standard). The method showed good linearity over the concentration ranges of 1–1000 ng/mL for 20‐(S )‐protopanaxatriol and 0.5–200 ng/mL for M1 and M2, with correlation coefficients of more than 0.995. The lower limits of quantification for 20‐(S )‐protopanaxatriol, M1, and M2 were 1, 0.5, 0.5 ng/mL, respectively. The intra‐ and interday precisions (RSD, %) were less than 10.41% while the accuracy (relative error, %) ranged from –3.14 to 8.73%. Under the current conditions, M1 and M2 were completely separated within 3 min. The validated assay was successfully applied to evaluating pharmacokinetic profiles of 20‐(S )‐protopanaxatriol, M1, and M2 in rat.  相似文献   

11.
Brazilin is a major homoisoflavonoid component isolated from the dried heartwood of traditional Chinese medicine Caesalpinia sappan L., which is a natural red pigment used for histological staining. Herein a sensitive, specific and rapid analytical LC‐MS/MS method was established and validated for brazilin in rat plasma. After a simple step of protein precipitation using acetonitrile, plasma samples were analyzed using an LC‐MS/MS system. Brazilin and the IS (protosappanin B) were separated on a Diamonsil C18 analytical column (150 × 4.6 mm, 5 µm) using a mixture of water and 10 mm ammonium acetate in methanol (20:80, v/v) as mobile phase at a flow rate of 0.6 mL/min. The method was sensitive with a lower limit of quantitation of 10.0 ng/mL, with good linearity (r2 ≥ 0.99) over the linear range 10.0–5000 ng/mL. All the validation data, such as accuracy and precision, matrix effect, extraction recovery and stability tests were within the required limits. The assay method was successfully applied to evaluate the pharmacokinetics parameters of brazilin after an oral dose of 100 mg/kg brazilin in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A simple, sensitive and selective high‐performance liquid chromatography electrospray ionization tandem mass spectrometry (LC‐MS/MS) method was developed for simultaneous determination and pharmacokinetic study of caffeic acid (CA) and its active metabolites. The separation with isocratic elution used a mobile phase composed of methanol and water (containing 0.1% formic acid) at a flow rate of 0.2 mL/min. The detection of target compounds was done in selected reaction monitoring (SRM) mode. The SRM detection was operated in the negative electrospray ionization mode using the transitions m/z 179 ([M ? H]?) → 135 for CA, m/z 193 ([M ? H]?) → 134.8 for ferulic acid and isoferulic acid and m/z 153 ([M ? H]?) → 108 for protocatechuic acid. The method was linear for all analytes over the investigated range with all correlation coefficients 0.9931. The lower limits of quantification were 5.0 ng/mL for analytes. The intra‐ and inter‐day precisions (relative standard deviation) were <5.86 and <6.52%, and accuracy (relative error) was between ?5.95 and 0.35% (n = 6). The developed method was applied to study the pharmacokinetics of CA and its major active metabolites in rat plasma after oral and intravenous administration of CA. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
A highly sensitive, specific and rapid LC‐ESI‐MS/MS method has been developed and validated for simultaneous quantification of methotrexate (MTX) and tofacitinib (TFB) in rat plasma (50 μL) using phenacetin as an internal standard (IS), as per the US Food and Drug Administration guidelines. After a solid‐phase extraction procedure, the separation of the analytes and IS was performed on a Chromolith RP18e column using an isocratic mobile phase of 5 m m ammonium acetate (pH 5.0) and acetonitrile at a ratio of 25:75 (v/v) using flow‐gradient with a total run time of 3.5 min. The detection was performed in multiple reaction monitoring mode, using the transitions of m/z 455.2 → 308.3, m/z 313.2 → 149.2 and m/z 180.3 → 110.2 for MTX, TFB and IS, respectively. The calibration curves were linear over the range of 0.49–91.0 and 0.40–74.4 ng/mL for MTX and TFB, respectively. The intra‐ and interday accuracy and precision values for MTX and TFB were <15% at low quality control (QC), medium QC and high QC and <20% at lower limit of quantification. The validated assay was applied to derive the pharmacokinetic parameters for MTX and TFB post‐dosing of MTX and TFB orally and intravenously to rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
A sensitive and specific UPLC‐MS/MS method was developed and validated for the simultaneous determination of 2‐amino‐2‐(2‐(4′‐(2‐propyloxazol‐4‐yl)‐[1,1′‐biphenyl]‐4‐yl)ethyl)propane‐1,3‐diol (SYL930), phosphorylated metabolite (SYL930‐P) and hydroxylated metabolite (SYL930‐M) in dog blood using SYL927 and SYL927‐P, analogues of SYL930, as the internal standards. Analytes were extracted with protein precipitation followed by chromatographic separation on a ZorbaxSB‐C18 column (3.5 μm, 2.1 × 100 mm) with a gradient elution of methanol–water containing 0.1% formic acid (v /v). A triple quadrupole tandem mass spectrometer operating in the positive electrospray ionization mode was used to detect SYL930, SYL930‐P, SYL930‐M and IS transitions of 381.2 → 364.2, 461.2 → 334.2, 397.3 → 380.3, 367.1 → 350.4 and 447.5 → 320.2, respectively. The linear calibration curves for SYL930, SYL930‐P and SYL930‐M were 0.5–500, 0.2–100 and 0.5–100 ng/mL, respectively (r 2 > 0.99). The intra‐day and inter‐day precisions (RSD, %) of analytes did not exceed 9.16% except for low QCs (≤16.22%), and the accuracy (RE, %) ranged from −14 to 11.4%. The mean recoveries for SYL930, SYL930‐P and SYL930‐M in dog blood were 85.13–107.94, 73.84–80.08 and 85.64–95.44%, respectively. The validated method was successfully applied to pharmacokinetic and PK/PD studies of SYL930 and its two major metabolites in dogs after an oral administration of SYL930.  相似文献   

15.
A rapid, simple, sensitive and selective LC‐MS/MS method was developed and validated for simultaneous quantification of montelukast (MT) and fexofenadine (FF) in human plasma (200 μL) using montelukast‐d6 (MT‐d6) and fexofenadine‐d10 (FF‐d10), respectively as an internal standard (IS) as per the US Food and Drug Administration guidelines. The chromatographic resolution was achieved on a Chromolith RP18e column using an isocratic mobile phase consisting of 20 mm ammonium formate–acetonitrile (20:80, v/v) at flow rate of 1.2 mL/min. The LC‐MS/MS was operated under the multiple‐reaction monitoring mode using electrospray ionization. The total run time of analysis was 4 min and elution of MT, FF, MT‐d6 and FF‐d10 occurred at 2.5, 1.2, 2.4 and 1.2 min, respectively. The standard curve found to be linear in the range 2.00–1000 ng/mL with a coefficient of correlation of ≥0.99 for both the drugs. The intra‐ and inter‐day accuracy and precision values for MT and FF met the acceptance as per FDA guidelines. MT and FF were found to be stable in a battery of stability studies viz., bench‐top, auto‐sampler and repeated freeze‐thaw cycles. The validated assay was applied to an oral bioequivalence study in humans. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
An accelerated solvent extraction coupled with gas chromatography‐tandem mass spectrometry (ASE‐GC‐MS/MS) method for detecting dinitolmide residue and its metabolite (3‐amino‐2‐methyl‐5‐nitrobenzamide, 3‐ANOT) in eggs was developed and optimized. The samples were extracted using ASE with acetonitrile as the extractant and were purified by passage through a neutral alumina solid‐phase extraction column. Then, the samples were analyzed using the GC‐MS/MS method. The optimized method parameters were validated according to the requirements set forth by the European Union and the Food and Drug Administration. The average recoveries of dinitolmide and 3‐ANOT from eggs (egg white, egg yolk, and whole egg) at the limit of quantification (LOQ), 0.5 maximum residue limit (MRL), 1 MRL, and 2 MRL were 82.74% to 87.49%, the relative standard deviations (RSDs) were less than 4.63%, and the intra‐day RSDs and the inter‐day RSDs were 2.96% to 5.21% and 3.94% to 6.34%, respectively. The limits of detection and the LOQ were 0.8 to 2.8 μg/kg and 3.0 to 10.0 μg/kg, respectively. The decision limits (CCα) were 3001.69 to 3006.48 μg/kg, and the detection capabilities (CCβ) were 3001.74 to 3005.22 μg/kg. Finally, the new method was successfully applied to the quantitative determination of dinitolmide and 3‐ANOT in 50 commercial eggs from local supermarkets.  相似文献   

17.
A highly sensitive, specific and rapid LC‐ESI‐MS/MS method has been developed and validated for the quantification of rocilinostat in small volume mouse plasma (20 μL) using vorinostat as an internal standard (IS) as per regulatory guidelines. Sample preparation was accomplished through a protein precipitation procedure with acetonitrile. Chromatography was achieved on Prodigy ODS‐2 column using a binary gradient using mobile phase A (0.2% formic acid in water) and B (acetonitrile) at a flow rate of 0.38 mL/min. The total chromatographic run time was 4.1 min and the elution of rocilinostat and IS occurred at ~3.2 and 2.9 min, respectively. A linear response function was established in the concentration range of 0.28–1193 ng/mL in mouse plasma. The intra‐ and inter‐day accuracy and precisions were in the ranges of 3.12–8.93 and 6.41–11.6%, respectively. This novel method has been applied to a pharmacokinetic study in mice. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Analytical aspects related to the assay of pentoxifylline (PTX), lisofylline (M1) and carboxypropyl dimethylxanthine (M5) metabolites are discussed through comparison of two alternative analytical methods based on liquid chromatography separation and atmospheric pressure electrospray ionization tandem mass spectrometry detection. One method is based on a ‘pure’ reversed‐phase liquid chromatography mechanism, while the second one uses the additional polar interactions with embedded amide spacers linking octadecyl moieties to the silicagel surface (C‐18 Aqua stationary phase). In both cases, elution is isocratic. Both methods are equally selective and allows separation of unknowns (four species associated to PTX, two species associated to M1) detected through specific mass transitions of the parent compounds and owning respective structural confirmation. Plasma concentration–time patterns of these compounds follow typical metabolic profiles. It has been advanced that in‐vivo formation of conjugates of PTX and M1 is possible, such compounds being cleaved back to the parent ones within the ion source. The first method was associated with a sample preparation procedure based on plasma protein precipitation by strong organic acid addition. The second method used protein precipitation by addition of a water miscible organic solvent. Both analytical methods were fully validated and used to assess bioequivalence between a prolonged release generic formulation and the reference product, under multidose and single dose approaches. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The aim of this study was to develop an LC–MS/MS method for simultaneous determination of 20(S) protopanaxadiol (PPD) and its three metabolites, PPD‐glucuronide (M1), (20S,24S)‐epoxy‐dammarane‐3,12,25‐triol (M2) and (20S,24R)‐epoxydammarane‐3,12,25‐triol (M3), in rat plasma. Precipitation with acetonitrile was employed for sample preparation and chromatographic separations were achieved on a C18 column. The sample was detected using triple quadrupole tandem mass spectrometer with selected reaction monitoring mode. The monitored precursor‐to‐product ion transitions were m/z 459.4 → 375.3 for PPD, m/z 635.4 → 113.0 for M1, m/z 477.4 → 441.4 for M2 and M3 and m/z 475.4 → 391.3 for IS. The developed assay was validated according to the guidelines of the US Food and Drug Administration. The calibration curves showed good linearity over the tested concentration ranges (r > 0.9993), with the LLOQ being 1 ng/mL for all analytes. The intra‐ and inter‐day precisions (RSD) were < 9.51% while the accuracy (RE) ranged from −8.91 to 12.84%. The extraction recovery was >80% and no obvious matrix effect was detected. The analytes were stable in rat plasma with the RE ranging from −12.34 to 9.77%. The validated assay has been successfully applied to the pharmacokinetic study of PPD as well as its metabolites in rat plasma. According to the pharmacokinetic parameters, the in vivo exposures of M1, M2 and M3 were 11.91, 47.95 and 22.62% of that of PPD, respectively.  相似文献   

20.
Binding assays for the γ‐aminobutyric acid (GABA) transporter GAT3 can be assumed to significantly facilitate screening for respective inhibitors. As appropriate labeled ligands for this promising drug target are not available so far, we started efforts to set up mass spectrometry‐based binding assays (MS binding assays), for which labeled markers are not required. Therefore, we developed a sensitive and rapid LC‐ESI‐MS/MS quantification method for DDPM‐1007 {(RS)‐1‐[4,4,4‐Tris(4‐methoxyphenyl)but‐2‐en‐1‐yl]piperidine‐3‐carboxylic acid}, one of the most potent GAT3 inhibitors yet known, as a potential GAT3 marker. Using a 50 × 2 mm C8 column in combination with a mobile phase composed of 10 mm ammonium bicarbonate buffer pH 8.0 and acetonitrile (60:40, v/v) at a flow rate of 450 μL/min DDPM‐1007 could be analyzed in the positive multiple reaction monitoring mode [(m/z) 502.5 → 265.4] within a chromatographic cycle time of 3 min. Deuterated DDPM‐1007 [(2H9)DDPM‐1007] was synthesized and employed as internal standard. This way DDPM‐1007 could be quantified in a range from 100 pm to10 nm in the matrix resulting from respective binding experiments without any sample preparation. The established quantification method met the requirements of the FDA guidance for bioanalytical method validation concerning linearity and intra‐ and inter‐batch accuracy. Based on this LC‐ESI‐MS/MS quantification preliminary MS binding assays employing membrane preparations obtained from a stably GAT3 expressing HEK293 cell line and DDPM‐1007 as nonlabeled GAT3 marker could be performed. In these experiments specific binding of DDPM‐1007 at GAT3 could be unambiguously detected. Additionally, the established LC‐MS method provides a suitable analytical tool for further pharmacokinetic characterization of DDPM‐1007, as exemplified for its logD determination. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号