首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extrusion film casting (EFC) is a commercially important process that is used to produce several thousand tons of polymer films and coatings. In a recent work, we demonstrated the influence of polymer chain architecture on the extent of necking in an isothermal film casting operation (Pol et al., J Rheol 57:559–583, 2013). In the present research, we have explored experimentally and theoretically the effects of long-chain branching on the extent of necking during nonisothermal film casting conditions. Polyethylenes of linear and long-chain branched architectures were used for experimental studies. The EFC process was analyzed using the 1-D flow model of Silagy et al. (Polym Eng Sci 36:2614–2625, 1996) in which the energy equation was introduced to model nonisothermal effects, and two multimode constitutive equations, namely the “extended pom-pom” (XPP, for long-chain branched polymer melts) equation and the “Rolie-Poly stretch version” (RP-S, for linear polymer melts) equation, were incorporated to account for the effects of polymer chain architecture. We show that the model does a better job of capturing the qualitative features of the experimental data, thereby elucidating the role of chain architecture and nonisothermal conditions on the extent of necking.  相似文献   

2.
In order to understand the role of viscoelasticity on draw resonance in the isothermal film casting process, a steady state analysis and a linear stability analysis for three-dimensional flow disturbances have been conducted. The constitutive equation used is a modified convected Maxwell model, with shear-rate dependent viscosity and fluid characteristic time. The numerical results indicate that the flow is stable below a lower critical draw ratio and above an upper critical draw ratio. Shear thinning in viscosity reduces the lower critical draw ratio and somewhat increases the upper critical draw ratio—thereby enlarging the region of instability. Slower shear reduction in fluid characteristic time dramatically decreases the upper critical draw ratio but has no significant effect on the lower critical draw ratio; therefore, fluids with higher characteristic time are more stable.  相似文献   

3.
The important industrial process of casting polymeric films suffers from the “draw resonance” instability that appears as sudden oscillations in the product dimensions. This instability influences the quality of the end-product and negatively limits productivity and efficiency of the process. The draw resonance originates when a material is being processed beyond the limits of its intrinsic properties. Research is conducted with the intention to find those process and material properties that allow to optimize the production process while keeping it stable.This paper concentrates on a non-isothermal analysis of the stability of the film casting. The mathematical model of the process is given by a quasi-linear system of first order PDEs with two point boundary conditions. The constitutive polymer behavior is approximated by the modified Giesekus model. Linear stability analysis combined with the Laplace transformation of the resulting linear system is applied to find parameters that determine mathematical and thus process instability. It all comes down to determining the spectrum of a compact operator; corresponding eigenfunctions can be regarded as the characteristic modes of the system. For implementation, the modification of Galerkin approach is used. The major advantage of the mathematical and numerical method is that the full spectrum is calculated in a matter of seconds. Our results agree perfectly with the ones from literature for isothermal case, and with the experimental data for the non-isothermal case. The results also indicate that non-isothermality is highly important and cannot be excluded from modeling.  相似文献   

4.
A linear stability analysis of the multilayer film casting of polymeric fluids has been conducted. A modified Giesekus model was used to characterize the rheological behaviors of the fluids. The critical draw ratio at the onset of draw resonance was found to depend on the elongational and shear viscosities of the fluids. Extensional-thickening has a stabilizing effect, whereas shear-thinning and extensional-thinning have destabilizing effects. The critical draw ratios for bilayer films of various thickness fractions are bounded by those for single layer films of the two fluids. When the two fluids have a comparable elongational viscosity, the critical draw ratio at a given Deborah number varies linearly with thickness fraction. When one fluid has a much larger elongational viscosity, it dominates the flow and the critical draw ratios at most thickness fractions remain close to its critical draw ratio as a single layer film. When the dominating fluid exhibits extensional-thickening, a film with a certain thickness fraction has more than one critical draw ratio at a given Deborah number and may not exhibit draw resonance within some range of the Deborah number.  相似文献   

5.
The interplay between inertia and gravity is examined for Newtonian film casting in this study. Both linear and nonlinear stability analyses are carried out. Linear stability analysis indicates that while both inertia and gravity enhance the stability in film casting, inertia plays a more dominant role regarding the critical draw ratio. In contrast, the disturbance frequency is more sensitive to the effect of gravity. The nonlinear results show that at the critical draw ratio, the system oscillates harmonically, indicating the onset of a Hopf bifurcation. For a draw ratio above criticality, finite-amplitude disturbances are amplified, and sustained oscillation is achieved. It is found that the growth rate increases with draw ratio, but decreases with inertia and gravity, which suggests that initial transients tend to take longer to die out for a fluid with inertia and gravity. Transient post-critical calculations show that the nonlinearity can be effectively halted by inertia and gravity. The oscillation frequency (film-thickness amplitude) decreases (increases) with draw ratio. However, the film oscillates more frequently but less fiercely with stronger inertia and gravity effects. The rupture of the film is also examined, and is found to be delayed by inertia and gravity. Interestingly, although the oscillation amplitude is found to be weakest at the chill roll, it is at this location that the film tends to rupture first.  相似文献   

6.
Nonisothermal melt spinning of viscoelastic fibers for which the viscosity varies in a step-like manner with respect to temperature is studied in this work. A set of one-dimensional equations based on the slender-jet approximation and the upper convected Maxwell model is used to describe the melt spinning process. The process is characterized by the force required to pull the fiber, the strength of external heating, and the draw ratio, the square of the ratio of the fiber diameter at the spinneret to that at the take-up roller. For low levels of elasticity and sufficiently strong external heating, there can be three pulling forces consistent with the same draw ratio, similar to the Newtonian case studied by Wylie et al. [31]. For higher levels of elasticity, the process exhibits a draw ratio plateau where the draw ratio hardly changes with the pulling force, reflecting a competition between thermal and elastic effects. As in the Newtonian case, external heating introduces a new instability – termed thermal instability – that is absent in isothermal systems. Linear stability analysis reveals that external heating improves stability for low levels of elasticity, but can worsen stability for higher levels of elasticity, which is again a consequence of the interplay between thermal and elastic effects. Nonlinear simulations indicate that the predictions of linear stability analysis carry over to the nonlinear regime, and show that unstable systems exhibit limit-cycle behavior. The results of the present work demonstrate a possible mechanism through which external heating can stabilize the melt spinning of viscoelastic fibers.  相似文献   

7.
An intriguing process, known as lithographically induced self-assembly (LISA), is initiated by positioning a template parallel to a flat silicon wafer-coated with a thin polymeric film and then raising the temperature above the glass transition/melting temperature of the film. Electric fields exert a force on charges induced at the polymer–air interface, placing the film in tension. The static equilibrium that results is unstable to disturbances with wavelengths for which the electrostatic force overcomes the surface tension. Flow ensues, generating a pattern in the film with periodicity reflecting the characteristic length of the instability.Though the initiation of the process as outlined above is generally accepted, the forces guiding the evolution of the film into the remarkably periodic microstructures observed are not. Our goal here is to create a sound understanding of the mechanism through quantitative modeling to facilitate the conversion of these microstructures into nano-structures. Given the apparent importance of conductivity in the film we adopt the “leaky dielectric model”, which also allows for re-distribution of charges on the interfaces, and undertake a linear stability analysis to explore the effects of various process parameters, particularly the conductivity and the film thickness. The linear stability analysis with the leaky dielectric model for the polymer film yields growth exponents and characteristic wavenumbers much larger than that for the perfect dielectric model. The differences are striking in that the slightest conductivity increases the growth exponent by a factor of 2–20 and decreases the fastest growing wavelength by a factor of 2–4.  相似文献   

8.
The nonlinear instability of the isothermal draw of optical fibers from cylindric preforms is studied. The unsteady model of the process is solved numerically, accounting for the effects of inertia, gravity and surface forces. The effect of viscosity and gravity on the nonlinear stability of the process is studied. The possibility of draw resonance occurring is shown for a rate ratio much lower than the critical one, obtained when solving the simplified model. The proposed solution can be used to study technological stability and to model the draw of fibers of other materials which behave as Newtonian fluids.  相似文献   

9.
The film casting process of an isotactic polypropylene was adopted as the source of data to evaluate the behavior of a crystallizing polymer. The increase in viscosity due to the crystallization was quantified, and a model was proposed to estimate the normalized rheological function (NRF) during the process. The estimation was based also on the availability of rich sets of data, i.e., the polymer temperature and crystallinity, the film velocity and width distribution along the draw direction, gathered during the process. The quasi-experimental NRF evolutions were compared with just two of the very numerous hardening models proposed in literature, and the main result is that the process is coherent with the choice of an NRF model which predicts the increase in viscosity only for substantial crystallinity amount.  相似文献   

10.
The influence of extrusion under strong slip conditions on the extensional properties of linear low-density polyethylene was studied in this work. The material was extruded at two different temperatures under strong slip and no slip conditions, and was subsequently subjected to uniaxial elongational flow by means of a Rheotens device. Strong slip was evident through the elimination of sharkskin distortions and the stick-slip instability, as well as by the electrification of the extrudates. The extrudate swell was smaller in the presence of slip when comparing with no slip conditions at constant apparent shear rate, but it was found to be a unique function of the shear stress if comparison was performed at constant stress. The draw ratio and melt strength of the filaments obtained under slip conditions were larger compared to those without slip. In addition, draw resonance was postponed to higher draw ratios during the extrusion with strong slip at constant apparent shear rate. It is suggested that slip of the polymer at the die wall decreases the shear stress in the bulk, and therefore, restricts the disentanglement and orientation of macromolecules during flow, which subsequently produces the increase in draw ratio and melt strength during stretching.  相似文献   

11.
针对固体基底上厚度小于100 nm的含活性剂超薄液膜演化过程, 基于润滑理论推导出包含分离压影响的液膜厚度和活性剂浓度的演化方程, 采用正则模态法导出了描述液膜线性稳定性的特征方程, 分析了多个特征参数对线性稳定性的影响, 数值模拟了液膜厚度和活性剂浓度演化历程, 对比了模拟所得非线性结果与线性分析预测结果的一致性.结果表明:范德华力具有促进扰动增长的作用, 较强的玻恩斥力促使扰动衰减, 使液膜趋于稳定;较小的毛细力数易使液膜凹陷处发生二次失稳, 并最终导致去润湿现象发生;液膜厚度和溶于液膜内部的活性剂浓度初值越大, 液膜稳定性越强, 液膜表面活性剂浓度影响则相反;增大吸附系数不利于液膜稳定性.  相似文献   

12.
On the basis of conventional hot-top casting and Casting, Refining and Electromagnetic process, a lower frequency electromagnetic field was applied during the conventional hot-top casting process. Nine thermocouples (type K) were introduced into the metal to study the temperature profile in the ingot during the start-up phase of casting process. The experimental results show that under the effect of the low frequency electromagnetic filed, the heat transfer is changed greatly and the film boiling disappears, which could restrain the formation of fine subsurface cracks; the sump is shallow, and the macrostructure of the ingot butt is fine during the start-up phase of direct chill casting process.  相似文献   

13.
基于同心旋转圆柱间Oldroyd-B型流体的六维动力系统,探讨了小间隙大扰动条件下高分子添加剂对滑动轴承间油膜非线性稳定性的影响。结果表明,弱弹性流体的失稳结构与牛顿流体相似,随着转速的增加,流体以同宿轨道分岔失稳,与牛顿流体相比,少量的高分子添加剂具有推迟流体层流的稳的作用。  相似文献   

14.
We report unsteady experimental results on the stability of fibre diameter in a continuous glass forming process, using two unique laser systems: a high resolution diffractometer and a backward phase Doppler interferometer. For draw ratios close to those used in the industry, the glass fibre diameter exhibits small fluctuations, which cannot be considered to be a result of draw resonance. It is shown that the amplitude of fibre diameter fluctuations decreases with increasing draw ratio, while the corresponding frequency increases with the temperature of the molten glass. Although the origin of these fluctuations is still not well understood, it appears that their frequency depends on the characteristics of the molten glass jet.  相似文献   

15.
The linear bifurcation theory is used to investigate the stability of soft thin films bonded to curved substrates. It is found that such a film can spontaneously lose its stability due to van der Waals or electrostatic interaction when its thickness reduces to the order of microns or nanometers. We first present the generic method for analyzing the surface stability of a thin film interacting with the substrate and then discuss several important geometric configurations with either a positive or negative mean curvature. The critical conditions for the onset of spontaneous instability in these representative examples are established analytically. Besides the surface energy and Poisson's ratio of the thin film, the curvature of the substrate is demonstrated to have a significant influence on the wrinkling behavior of the film. The results suggest that one may fabricate nanopatterns or enhance the surface stability of soft thin films on curved solid surfaces by modulating the mechanical properties of the films and/or such geometrical properties as film thickness and substrate curvature. This study can also help to understand various phenomena associated with surface instability.  相似文献   

16.
Data from iPP film casting experiments served as a basis to model the effect of flow on polymer crystallization kinetics. These data describe the temperature, width, velocity and crystallinity distributions along the drawing direction under conditions permitting crystallization along the draw length.In order to model the effect of flow on crystallization kinetics, a modification of a previously defined quiescent kinetic model was adopted. This modification consisted in using a higher melting temperature than in the original quiescent model. The reason for the modification was to account for an increase of crystallization temperature due to entropy decrease of the flowing melt. This entropy decrease was calculated from the molecular orientation on the basis of rubber elasticity theory applied to the entangled and elongated melt. The evolution of molecular orientation (elongation) during the film casting experiments was calculated using a non-linear dumbbell model which considers the relaxation time, obtained from normal stress difference and viscosity functions, to be a function of the deformation rate.The comparison between experimental distributions and model based crystallinity distributions was satisfactory.  相似文献   

17.
The effect of die flow variables on the stability of isothermal melt spinning has been studied, both theoretically and experimentally. A die flow analysis provides the boundary conditions for a differential treatment of the spinline, both as a steady flow problem and as a linear stability problem. From the latter, one can predict the onset of draw resonance as a function of draw ratio, certain rheological parameters, and the stresses in the die. The experimental materials were two commercial polypropylenes and the apparatus consisted of a short (1.5–6 cm) isothermal spinning chamber; the agreement with theory was quite satisfactory. In most cases, high shear rates in the die (and subsequent high die swells) decrease the spinline stability but the magnitude of this interaction depends on many variables. In general, there is a high propensity for draw resonance (or ductile breakage) when the spinline is operating under conditions of severe thinning in a rheological sense.  相似文献   

18.
The stability of fully developed pressure driven plane laminar flow of a Maxwell fluid has been studied using linear hydrodynamic stability theory. Elasticity is destabilizing in the inertial regime, but the flow is found to be stable to infinitesimal disturbances at low Reynolds numbers. This result contradicts previous calculations, which predicted a low Reynolds number flow instability at a critical recoverable shear of order unity. The previous calculations were carried out using less accurate numerical methods; the eigenvalue problem which must be solved is a delicate one, requiring sophisticated umerical techniques in order to avoid the calculation of spurious unstable modes.This work has direct bearing on the question of the mechanism of a low Reynolds number extrusion instability known as “melt fracture”. It is observed that the intensity of melt fracture increases with increasing die length for high density polyethylene, and it is therfore believed by some experimentalists that fully-developed die flow is unstable for this polymer above a critical recoverable shear. The analysis appears to be at variance with this interpretation of the experimental results.  相似文献   

19.
In the first part of this paper a numerical strategy is developed for the numerical simulation of the coextrusion process. Coextrusion consists of extruding many polymers in the same die in order to combine their respective properties. The die is generally flat and quite large and consequently a two-dimensional approximation is sufficient. The main difficulty is to accurately predict the interfaces between the different layers of polymers. A finite element method based on a pseudoconcentration function is developed to calculate these fluid interfaces. Numerical results are presented for the coextrusion of up to five fluids. In the second part of the paper the above strategy is slightly modified to simulate the film-casting process. In this case a polymer is stretched (with a draw velocity UL) at the exit of the die in order to produce a very thin layer of polymer that is cooled in contact with a chill roll. Only one polymer-air interface has to be computed. The draw ratio is defined as Dr = UL/U , where U is the mean velocity of the polymer at the exit of the die. As the draw ratio is increased, instabilities appear and numerical results put in evidence the draw resonance phenomenon.  相似文献   

20.
We present a methodology to analyze the stationary states and stability of complex fluid flows by using hybrid, discrete, and/or continuum multi-scale simulations. Building on existing theories, our scheme extracts dynamical and equilibrium characteristics from carefully chosen time integrations of these multi-scale evolution equations. Two canonical problems are presented to demonstrate the ability and accuracy of the formalism. The first is an investigation of flow-induced transitions seen in homogeneous, hard- rod liquid crystal suspensions subjected to a linear shear flow. In the second problem, we study the phenomenon of draw resonance, a dynamical instability in an isothermal fiber-spinning process, by using a multi-scale hybrid simulation that incorporates both stochastic and continuum models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号