首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent developments in actuarial literature have shown that credibility theory can serve as an effective tool in mortality modelling, leading to accurate forecasts when applied to single or multi-population datasets. This paper presents a crossed classification credibility formulation of the Lee–Carter method particularly designed for multi-population mortality modelling. Differently from the standard Lee–Carter methodology, where the time index is assumed to follow an appropriate time series process, herein, future mortality dynamics are estimated under a crossed classification credibility framework, which models the interactions between various risk factors (e.g. genders, countries). The forecasting performances between the proposed model, the original Lee–Carter model and two multi-population Lee–Carter extensions are compared for both genders of multiple countries. Numerical results indicate that the proposed model produces more accurate forecasts than the Lee–Carter type models, as evaluated by the mean absolute percentage forecast error measure. Applications with life insurance and annuity products are also provided and a stochastic version of the proposed model is presented.  相似文献   

2.
In recent years, joint modelling of the mortality of related populations has received a surge of attention. Several of these models employ cointegration techniques to link underlying factors with the aim of producing coherent projections, i.e. projections with non-diverging mortality rates. Often, however, the factors being analysed are not fully identifiable and arbitrary identification constraints are (inadvertently) allowed to influence the analysis thereby compromising its validity. Taking the widely used Lee–Carter model as an example, we point out the limitations and pitfalls of cointegration analysis when applied to semi-identifiable factors. On the other hand, when properly applied cointegration theory offers a rigorous framework for identifying and testing long-run relations between populations. Although widely used as a model building block, cointegration as an inferential tool is often overlooked in mortality analysis. Our aim with this paper is to raise awareness of the inferential strength of cointegration and to identify the time series models and hypotheses most suitable for mortality analysis. The concluding application to UK mortality shows by example the insights that can be obtained from a full cointegration analysis.  相似文献   

3.
4.
In most methods for modeling mortality rates, the idiosyncratic shocks are assumed to be homoskedastic. This study investigates the conditional heteroskedasticity of mortality in terms of statistical time series. We start from testing the conditional heteroskedasticity of the period effect in the naïve Lee–Carter model for some mortality data. Then we introduce the Generalized Dynamic Factor method and the multivariate BEKK GARCH model to describe mortality dynamics and the conditional heteroskedasticity of mortality. After specifying the number of static factors and dynamic factors by several variants of information criterion, we compare our model with other two models, namely, the Lee–Carter model and the state space model. Based on several error-based measures of performance, our results indicate that if the number of static factors and dynamic factors is properly determined, the method proposed dominates other methods. Finally, we use our method combined with Kalman filter to forecast the mortality rates of Iceland and period life expectancies of Denmark, Finland, Italy and Netherlands.  相似文献   

5.
The predominant way of modelling mortality rates is the Lee–Carter model and its many extensions. The Lee–Carter model and its many extensions use a latent process to forecast. These models are estimated using a two-step procedure that causes an inconsistent view on the latent variable. This paper considers identifiability issues of these models from a perspective that acknowledges the latent variable as a stochastic process from the beginning. We call this perspective the plug-in age–period or plug-in age–period–cohort model. Defining a parameter vector that includes the underlying parameters of this process rather than its realizations, we investigate whether the expected values and covariances of the plug-in Lee–Carter models are identifiable. It will be seen, for example, that even if in both steps of the estimation procedure we have identifiability in a certain sense it does not necessarily carry over to the plug-in models.  相似文献   

6.
A new Lee–Carter model parameterization is introduced with two advantages. First, the Lee–Carter parameters are normalized such that they have a direct and intuitive interpretation, comparable across populations. Second, the model is stated in terms of the “needed-exposure” (NE). The NE is the number required in order to get one expected death and is closely related to the “needed-to-treat” measure used to communicate risks and benefits of medical treatments. In the new parameterization, time parameters are directly interpretable as an overall across-age NE. Age parameters are interpretable as age-specific elasticities: percentage changes in the NE at a particular age in response to a percent change in the overall NE. A similar approach can be used to confer interpretability on parameters of other mortality models.  相似文献   

7.
With the decline in the mortality level of populations, national social security systems and insurance companies of most developed countries are reconsidering their mortality tables taking into account the longevity risk. The Lee and Carter model is the first discrete-time stochastic model to consider the increased life expectancy trends in mortality rates and is still broadly used today. In this paper, we propose an alternative to the Lee-Carter model: an AR(1)-ARCH(1) model. More specifically, we compare the performance of these two models with respect to forecasting age-specific mortality in Italy. We fit the two models, with Gaussian and t-student innovations, for the matrix of Italian death rates from 1960 to 2003. We compare the forecast ability of the two approaches in out-of-sample analysis for the period 2004-2006 and find that the AR(1)-ARCH(1) model with t-student innovations provides the best fit among the models studied in this paper.  相似文献   

8.
The study of long-run equilibrium processes is a significant component of economic and finance theory. The Johansen technique for identifying the existence of such long-run stationary equilibrium conditions among financial time series allows the identification of all potential linearly independent cointegrating vectors within a given system of eligible financial time series. The practical application of the technique may be restricted, however, by the pre-condition that the underlying data generating process fits a finite-order vector autoregression (VAR) model with white noise. This paper studies an alternative method for determining cointegrating relationships without such a precondition. The method is simple to implement through commonly available statistical packages. This 'residual-based cointegration' (RBC) technique uses the relationship between cointegration and univariate Box-Jenkins ARIMA models to identify cointegrating vectors through the rank of the covariance matrix of the residual processes which result from the fitting of univariate ARIMA models. The RBC approach for identifying multivariate cointegrating vectors is explained and then demonstrated through simulated examples. The RBC and Johansen techniques are then both implemented using several real-life financial time series.  相似文献   

9.
Mortality improvements pose a challenge for the planning of public retirement systems as well as for the private life annuities business. For public policy, as well as for the management of financial institutions, it is important to forecast future mortality rates. Standard models for mortality forecasting assume that the force of mortality at age x in calendar year t is of the form exp(αx + βxκt). The log of the time series of age-specific death rates is thus expressed as the sum of an age-specific component αx that is independent of time and another component that is the product of a time-varying parameter κt reflecting the general level of mortality, and an age-specific component βx that represents how rapidly or slowly mortality at each age varies when the general level of mortality changes. The parameters are usually estimated via singular value decomposition or via maximum likelihood in a binomial or Poisson regression model. This paper demonstrates that it is possible to take into account the overdispersion present in the mortality data by estimating the parameter in a negative binomial regression model. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
We propose a new survival function to forecast life expectancies at various ages. The proposed model comprises the youth-to-adulthood component and the old-to-oldest-old component. It is able to closely fit adult survivorship of the US men and women in the period from 1950 to 2010. We find evidence that the forecasting performance of life expectancies by the proposed model compares favorably with those obtained from the popular Lee–Carter model (1992) and the shifting logistic model proposed by Bongaarts (2005).  相似文献   

11.
In modeling and forecasting mortality the Lee-Carter approach is the benchmark methodology. In many empirical applications the Lee-Carter approach results in a model that describes the log central death rates by means of linear trends. However, due to the volatility in (past) mortality data, the estimation of these trends, and, thus, the forecasts based on them, might be rather sensitive to the sample period employed. We allow for time-varying trends, depending on a few underlying factors, to make the estimates of the future trends less sensitive to the sampling period. We formulate our model in a state-space framework, and use the Kalman filtering technique to estimate it. We illustrate our model using Dutch mortality data.  相似文献   

12.
In this paper, we propose a procedure for reducing the uncertainty in mortality projections, on the basis of a log bilinear Poisson Lee Carter model (Renshaw and Haberman Appl Stat 52:119–137, 2003a). In the literature, because the non-linear nature of the quantities under consideration has prevented analytical solutions, simulation techniques have been used in order to provide prediction intervals for forecasted quantities (for example, Brouhns et al. Scand Actuar J 3:212–224, 2005, Renshaw and Haberman Insur Math Econ 42:797–816, 2008). In this respect, we adopt the bootstrap simulation approach in order to measure the uncertainty affecting mortality projections. In particular, we propose making the bootstrap procedure more efficient by using a specific variance reducing technique, the so-called Stratified Sampling technique. To this end, we propose a two stage simulation bootstrap procedure where variance reducing techniques are combined with the simple bootstrap of the Poisson Lee Carter version. Numerical applications are shown using the results for some datasets.  相似文献   

13.
We introduce a model for the mortality rates of multiple populations. To build the proposed model we investigate to what extent a common age effect can be found among the mortality experiences of several countries and use a common principal component analysis to estimate a common age effect in an age–period model for multiple populations. The fit of the proposed model is then compared to age–period models fitted to each country individually, and to the fit of the model proposed by Li and Lee (2005).Although we do not consider stochastic mortality projections in this paper, we argue that the proposed common age effect model can be extended to a stochastic mortality model for multiple populations, which allows to generate mortality scenarios simultaneously for all considered populations. This is particularly relevant when mortality derivatives are used to hedge the longevity risk in an annuity portfolio as this often means that the underlying population for the derivatives is not the same as the population in the annuity portfolio.  相似文献   

14.
The paper compares the performance of three mortality models in the context of optimal pricing and hedging of unit-linked life insurance contracts. Two of the models are the classical parametric results of Gompertz and Makeham, the third is the recently developed method of Lee and Carter [Lee, R.D., Carter, L.R., 1992. Modelling and forecasting U.S. mortality. J. Amer. Statist. Assoc. 87 (14), 659–675] for fitting mortality and forecasting it as a stochastic process. First, quantile hedging techniques of Föllmer and Leukert [Föllmer, H., Leukert, P., 1999. Quantile hedging. Finance Stoch. 3, 251–273] are applied to price a unit-linked contract with payoff conditioned on the client’s survival to the contract’s maturity. Next, the paper analyzes the implications of the three mortality models on risk management possibilities for the insurance firm based on numerical illustrations with the Toronto Stock Exchange/Standard and Poor financial index and mortality data for the USA, Sweden and Japan. The strongest differences between the models are observed in Japan, where the lowest mortality for the next two decades is expected. The general mortality decline patterns, rectangularization of the survival curve and deceleration of mortality at older ages, are well pronounced in the results for all three countries.  相似文献   

15.
Forecasting mortality rates is a problem which involves the analysis of high-dimensional time series. Most of usual mortality models propose to decompose the mortality rates into several latent factors to reduce this complexity. These approaches, in particular those using cohort factors, have a good fit, but they are less reliable for forecasting purposes. One of the major challenges is to determine the spatial–temporal dependence structure between mortality rates given a relatively moderate sample size. This paper proposes a large vector autoregressive (VAR) model fitted on the differences in the log-mortality rates, ensuring the existence of long-run relationships between mortality rate improvements. Our contribution is threefold. First, sparsity, when fitting the model, is ensured by using high-dimensional variable selection techniques without imposing arbitrary constraints on the dependence structure. The main interest is that the structure of the model is directly driven by the data, in contrast to the main factor-based mortality forecasting models. Hence, this approach is more versatile and would provide good forecasting performance for any considered population. Additionally, our estimation allows a one-step procedure, as we do not need to estimate hyper-parameters. The variance–covariance matrix of residuals is then estimated through a parametric form. Secondly, our approach can be used to detect nonintuitive age dependence in the data, beyond the cohort and the period effects which are implicitly captured by our model. Third, our approach can be extended to model the several populations in long run perspectives, without raising issue in the estimation process. Finally, in an out-of-sample forecasting study for mortality rates, we obtain rather good performances and more relevant forecasts compared to classical mortality models using the French, US and UK data. We also show that our results enlighten the so-called cohort and period effects for these populations.  相似文献   

16.
Forecasts of female and male mortality that are conducted independently run the risk of projecting implausible sex differentials and fail to exploit correlations that are known to exist between the sexes. We present a new model for the simultaneous modeling of female and male mortality. The model casts mortality as a complex-valued process where the real and imaginary parts correspond to female and male mortalities, respectively. Calculations proceed similarly to the usual Lee–Carter model, via the singular value decomposition, albeit in complex form. Initial applications suggest that the complex Lee–Carter gives fits that are broadly comparable to independent real fits, while offering the advantage of explicit modeling of the relationship between the sexes. Furthermore, model parameters are informative and easily-interpretable.  相似文献   

17.
The relative performance of multipopulation stochastic mortality models is investigated. When targeting mortality rates, we consider five extensions of the well known Lee–Carter single population extrapolative approach. As an alternative, we consider similar structures when mortality improvement rates are targeted. We use a dataset of deaths and exposures of Italian regions for the years 1974–2008 to conduct a comparison of the models, running a battery of tests to assess the relative goodness of fit and forecasting capability of different approaches. Results show that the preferable models are those striking a balance between complexity and flexibility.  相似文献   

18.
This paper introduces mortality dependence in multi-country mortality modeling using a dynamic copula approach. Specifically, we use time-varying copula models to capture the mortality dependence structure across countries, examining both symmetric and asymmetric dependence structures. In addition, to capture the phenomenon of a heavy tail for the multi-country mortality index, we consider not only the setting of Gaussian innovations but also non-Gaussian innovations under the Lee–Carter framework model. As tests of the goodness of fit of different dynamic copula models, the pattern of mortality dependence, and the distribution of the innovations, we used empirical mortality data from Finland, France, the Netherlands, and Sweden. To understand the effect of mortality dependence on longevity derivatives, we also built a valuation framework for pricing a survivor index swap, then investigated the fair swap rates of a survivor swap numerically. We demonstrate that failing to consider the dynamic copula mortality model and non-Gaussian innovations would lead to serious underestimations of the swap rates and loss reserves.  相似文献   

19.
To value catastrophic mortality bonds, a number of stochastic mortality models with transitory jump effects have been proposed. Rather than modeling the age pattern of jump effects explicitly, most of the existing models assume that the distributions of jump effects and general mortality improvements across ages are identical. Nevertheless, this assumption does not seem to be in line with what we observe from historical data. In this paper, we address this problem by introducing a Lee–Carter variant that captures the age pattern of mortality jumps by a distinct collection of parameters. The model variant is then further generalized to permit the age pattern of jump effects to vary randomly. We illustrate the two proposed models with mortality data from the United States and English and Welsh populations, and use them to value hypothetical mortality bonds with similar specifications to the Atlas IX Capital Class B note that was launched in 2013. It is found that the features we consider have a significant impact on the estimated prices.  相似文献   

20.
Mortality forecasting has received increasing interest during recent decades due to the negative financial effects of continuous longevity improvements on public and private institutions’ liabilities. However, little attention has been paid to forecasting mortality from a cohort perspective. In this article, we introduce a novel methodology to forecast adult cohort mortality from age-at-death distributions. We propose a relational model that associates a time-invariant standard to a series of fully and partially observed distributions. Relation is achieved via a transformation of the age-axis. We show that cohort forecasts can improve our understanding of mortality developments by capturing distinct cohort effects, which might be overlooked by a conventional age–period perspective. Moreover, mortality experiences of partially observed cohorts are routinely completed. We illustrate our methodology on adult female mortality for cohorts born between 1835 and 1970 in two high-longevity countries using data from the Human Mortality Database.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号