首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work,the use of sepiolite for the removal of carbon dioxide from a carbon diox- ide/methane mixture by a pressure swing adsorption(PSA)process has been researched.Adsorption equilibrium and kinetics have been measured in a fixed-bed,and the adsorption equilibrium parameters of carbon dioxide and methane on sepiolite have been obtained.A model based on the LDF approxima- tion has been employed to simulate the fixed-bed kinetics,using the Langmuir equation to describe the adsorption equilibrium isotherm.The functioning of a PSA cycle for separating carbon dioxide/methane mixtures using sepiolite as adsorbent has also been studied.The experimental results were compared with the ones predicted by the model adapted to a PSA system.Methane with purity higher than 97% can be obtained from feeds containing carbon dioxide with concentrations ranging from 34% to 56% with the proposed PSA cycle.These results suggest that sepiolite is an adsorbent with good properties for its employment in a PSA cycle for carbon dioxide removal from landfill gases.  相似文献   

2.
In this work, the separation of carbon dioxide/methane mixtures by PSA using a basic resin (Amberlite IRA-900) has been studied. Adsorption equilibrium and kinetics of carbon dioxide and methane on a fixed-bed of this adsorbent have been measured, and a binary adsorption equilibrium isotherm has been obtained. The adsorbent deactivation with the number of adsorption-desorption cycles, and its regeneration, have also been analysed. A model based on the LDF approximation has been used to describe the experimental breakthrough curves. The applicability of the basic resin to the separation of carbon dioxide/methane mixtures has been studied in an experimental PSA setup using a single bed. The validity of the model used in the fixed-bed study for simulating a PSA system has been checked by comparing the simulated and the experimental performance of the proposed PSA cycle.  相似文献   

3.
The knowledge about the adsorption and diffusion properties (specially about diffusion) of aluminophosphate molecular sieves is very scarce in the literature. These materials offer interesting properties as adsorbents as they have a polar framework and do not contain charge-balancing cations. In this work, the adsorption isotherms of nitrogen, methane and carbon dioxide over an AlPO4-11 sample synthesized in our laboratories have been measured with a volumetric method at 25, 35, 50 and 65 °C over a pressure range up to 110 kPa. The adsorption capacities of each gas are determined by the strength of interaction with the pore surface (carbon dioxide > methane > nitrogen). The equilibrium selectivity to carbon dioxide is quite high with respect to other adsorbents without cations due to the polarity of the aluminophosphate framework. The adsorption Henry’s law constants and diffusion time constants of nitrogen, methane and carbon dioxide in the synthesized AlPO4-11 material have been measured from pulse experiments. A pressure swing adsorption (PSA) process for recovering methane from a carbon dioxide/methane mixture (resembling biogas) has been designed using a dynamic model where the measured adsorption equilibrium and kinetic information has been incorporated. The simulation results show that the proposed process could be simpler than other PSA processes for biogas upgrading based on cation-containing molecular sieves such as 13X zeolite, as it can treat the biogas at atmospheric pressure, and it requires a lower pressure ratio, to produce high purity methane with high recovery.  相似文献   

4.
In this work, we report new experimental data of pure and binary adsorption equilibria of carbon dioxide and methane on the activated carbon RB2 at 273 and 298 K. The pressure range studied were 0–3.5 MPa for pure gases and 0–0.1 MPa for mixtures. The combination of the generalized Dubinin model to describe the pure CO2 and CH4 isotherms with the IAST (Ideal Adsorbed Solution Theory) for the mixtures provide a method for the calculation of the binary adsorption equilibria. This formulation predicts with acceptable accuracy the binary adsorption data and can easily be integrated in general dynamic simulation of PSA (pressure swing adsorption process) adsorption columns. It involves only three parameters, independent of the temperature, and directly determined with only one adsorption isotherm of CO2.  相似文献   

5.
The grand canonical ensemble Monte Carlo method has been used to study adsorption of carbon dioxide, methane, and their mixtures with different compositions in slitlike carbon pores at a temperature of 318 K and pressures below 60 atm. The data obtained have been used to show the effect of fixed amounts of pre-adsorbed water (19, 37, and 70 vol %) on the adsorption capacity and selectivity of carbon micro- and mesopores. The presence of water reduces the adsorption capacity throughout the studied pressure range upon adsorption of gaseous mixtures containing less than 50% CO2, as well as in narrow micropores (with widths of 8?12 Å). Upon adsorption of mixtures with CO2 contents higher than 50%, the adsorption capacity of pores with low water contents appears, in some region of the isotherm, to be higher than that in dry pores. In the case of wide pores (16 and 20 Å), this region is located at low and moderate pressures, while for mesopores it is located at high pressures. The analysis of the calculated data has shown that the molecular mechanism of the influence of preadsorbed water on the adsorption capacity is based on the competition between the volume accessible for adsorption (decreases the capacity) and the strength of the interaction between carbon dioxide molecules and water molecules (increases the capacity). Therewith, the larger the surface area of the water–gas contact, the stronger the H2O–CO2 interactions.  相似文献   

6.
Adsorption of carbon dioxide and methane in porous activated carbon and carbon nanotube was studied experimentally and by Grand Canonical Monte Carlo (GCMC) simulation. A gravimetric analyzer was used to obtain the experimental data, while in the simulation we used graphitic slit pores of various pore size to model activated carbon and a bundle of graphitic cylinders arranged hexagonally to model carbon nanotube. Carbon dioxide was modeled as a 3-center-Lennard-Jones (LJ) molecule with three fixed partial charges, while methane was modeled as a single LJ molecule. We have shown that the behavior of adsorption for both activated carbon and carbon nanotube is sensitive to pore width and the crossing of isotherms is observed because of the molecular packing, which favors commensurate packing for some pore sizes. Using the adsorption data of pure methane or carbon dioxide on activated carbon, we derived its pore size distribution (PSD), which was found to be in good agreement with the PSD obtained from the analysis of nitrogen adsorption data at 77 K. This derived PSD was used to describe isotherms at other temperatures as well as isotherms of mixture of carbon dioxide and methane in activated carbon and carbon nanotube at 273 and 300 K. Good agreement between the computed and experimental isotherm data was observed, thus justifying the use of a simple adsorption model.  相似文献   

7.
We have used the grand canonical Monte Carlo method to study the adsorption and selectivity of mixtures of carbon dioxide with methane and nitrogen at high (i.e., ambient) temperatures in model slit pores with graphitic surfaces. Experimental data, including new high pressure measurements for carbon dioxide and methane on a non-porous graphitic standard, were used to test the potential models. The mixture simulations predict that carbon dioxide is preferentially adsorbed in both systems. The results are discussed in terms of competing energetic and entropic effects and the underlying molecular mechanisms.  相似文献   

8.
We use a fast density functional theory (a "slab-DFT") and the polydisperse independent ideal slit-pore model to predict gas mixture adsorption in active carbons. The DFT is parametrized by fitting to pure gas isotherms generated by Monte Carlo simulation of adsorption in model graphitic slit-pores. Accurate gas molecular models are used in our Monte Carlo simulations with gas-surface interactions calibrated to a high surface area carbon, rather than a low surface area carbon as in all previous work of this type, as described in part 1 of this work. We predict the adsorption of binary mixtures of carbon dioxide, methane, and nitrogen on two active carbons up to about 30 bar at near-ambient temperatures. We compare two sets of results; one set obtained using only the pure carbon dioxide adsorption isotherm as input to our pore characterization process, and the other obtained using both pure gas isotherms as input. We also compare these results with ideal adsorbed solution theory (IAST). We find that our methods are at least as accurate as IAST for these relatively simple gas mixtures and have the advantage of much greater versatility. We expect similar results for other active carbons and further performance gains for less ideal mixtures.  相似文献   

9.
Membrane-based gas sensors were developed and used for determining the composition on bi-component mixtures in the 0-100% range, such as oxygen/nitrogen and carbon dioxide/methane (biogas). These sensors are low cost and are aimed at a low/medium precision market.The paper describes the use of this sensor for two gas mixtures: carbon dioxide/methane and carbon dioxide/helium. The membranes used are poly(dimethylsiloxane) (PDMS) and Teflon-AF hollow fibers. The response curves for both sensors were obtained at three different temperatures. The results clearly indicate that the permeate pressure of the sensors relates to the gas mixture composition at a given temperature. The data is represented by a third order polynomial. The sensors enable quantitative carbon dioxide analysis in binary mixtures with methane or helium. The response of the sensors is fast (less than 50 s), continuous, reproducible and long-term stable over a period of 2.3×107 s (9 months). The absolute sensitivity of the sensors depends on the carbon dioxide feed concentration ranging from 0.03 to 0.13 MPa.  相似文献   

10.
Permeation of various gases (carbon dioxide, nitrous oxide, methane, nitrogen, oxygen, argon, krypton, neon) and their equimolar mixtures through DD3R membranes have been investigated over a temperature range of 220–373 K and a feed pressure of 101–400 kPa. Helium was used as sweep gas at atmospheric pressure. Adsorption isotherms were determined in the temperature range 195–298 K, and modelled by a single and dual site Langmuir model. The permeation flux is determined by the size of the molecule relative to the window opening of DD3R, and its adsorption behaviour. As a function of temperature, bulky molecules (methane) show activated permeation, weakly adsorbing molecules decreasing permeation behaviour and strongly adsorbing molecules pass through a maximum. Counter diffusion of the sweep gas (helium) ranged from almost zero up to the order of the feed gas permeation and was strongly influenced by the adsorption of the feed gas.

DD3R membranes have excellent separation performance for carbon dioxide/methane mixtures (selectivity 100–3000), exhibit good selectivity for nitrogen/methane (20–45), carbon dioxide and nitrous oxide/air (20–400), and air/krypton (5–10) and only a modest selectivity for oxygen/nitrogen (2) separation. The selectivity of mixtures of a strongly and a weakly adsorbing component decreased with increasing temperature and pressure. The selectivity of mixtures of weakly adsorbing components was independent of pressure.

The permeation and separation characteristics of light gases through DD3R membranes can be explained by taking into account: (1) steric effects introduced by the window opening of DD3R leading to molecular sieving and activated transport, (2) competitive adsorption effects, as observed for mixtures involving strongly adsorbing gases, and (3) interaction between diffusing molecules in the cages of the zeolite.  相似文献   


11.
The ideal adsorbed solution (IAS) theory is the benchmark for the prediction of mixed-gas adsorption equilibria from pure-component isotherms. In this work, we use atomistic grand canonical Monte Carlo simulations to test the effects of molecular siting and adsorbent energetic heterogeneity on the applicability of the IAS theory. Pure-component isotherms generated by atomistic simulation are used to predict binary isobaric isotherms using the IAS theory. These predicted isotherms are compared with those obtained by a full atomistic simulation of the binary mixture. Binary mixtures of argon, methane, and CF4 in silicalite are found to obey IAS theory, while benzene/methane and cyclohexane/methane in silicalite are nonideal. The mixture of argon and CF4 is ideal despite the large difference in the sizes of the two species. This contradicts previous hypotheses in the literature, which state that mixtures of species of unequal size do not adsorb ideally. The nonideal behavior of the benzene/methane and cyclohexane/methane systems occurs because of adsorbent heterogeneity in these systems, which depends on both sorbent and sorbate. In addition, we use a lattice gas model with parameters derived from atomistic simulation to demonstrate analytically that a sufficiently energetically heterogeneous adsorbent will result in the breakdown of IAS theory even in the absence of interactions between sorbates.  相似文献   

12.
In this paper the analytical equation of state (EoS) proposed by Ihm‐Song‐Mason was applied to calculate molar volume of mixtures of carbon dioxide with nitrogen and methane. The pair interaction potential has been used to evaluate the second virial coefficients and the ISM EoS parameters (i.e. α and b). The calculated values of the aforesaid quantities were applied to predict the molar volumes for mixtures of carbon dioxide with nitrogen and methane. Agreement with experiment was excellent for both mixtures.  相似文献   

13.
In order to assess and improve the quality of high pressure and temperature adsorption isotherms and differential enthalpies of adsorption on microporous and mesoporous materials, a specific thermostated device comprising a differential heat flow calorimeter coupled with a home-built manometric system has been built. The differential heat flow calorimeter is a Tian Calvet Setaram C80 model which can be operated isothermally, the manometric system is a stainless steel homemade apparatus. The thermostated coupled apparatus allows measurements for pressure up to 2.5?MPa and temperature from 303 to 423?K. Reliability and reproducibility were established by measuring adsorption isotherms on a benchmark sorbent (Filtrasorb F400). A detailed experimental study of the adsorption of pure carbon dioxide and methane has been made on activated carbons (Filtrasorb F400 and EcoSorb); a new procedure for determining the differential enthalpies of adsorption based on the stepwise method is also proposed. The error in the determination of the amount adsorbed is about 3.6%, and the error in the determination of the differential enthalpies of adsorption is 4%.  相似文献   

14.
Adsorption separation of carbon dioxide from nitrogen at different system total pressures with silicalite as the adsorbent was studied by using concentration pulse chromatography. Improving the methodology for determining binary adsorption isotherms by concentration pulse method (CPM) was also the goal of this study. Binary adsorption isotherms, x–y phase diagrams and separation factor plots have been determined at 26 °C to look at the influence of pressure on the separation using concentration pulse chromatography. Available methods for determining binary adsorption isotherms using CPM have been reviewed and shown to be incapable of interpreting this particular binary system. An improved novel model has been proposed to interpret the data in this study. It has been referred to as the Kennedy-Tezel concentration pulse method (KT-CPM) and has been shown to be superior to other methods used in the literature. Results using this data were found to be consistent with the previous results in the literature. The binary isotherms for the CO2–N2 system show a decrease in CO2 selectivity as total system pressure increases. The optimal separation factor for silicalite was found to increase with decreasing system pressure and decreasing mole fraction of CO2 in the feed mixture.  相似文献   

15.
Single gas adsorption isotherms of methane and carbon dioxide on micro-porous Norit RB1 activated carbon were determined in a gravimetric analyser in the temperature range of 292 to 349 K and pressures to 0.8 Mpa. Furthermore binary isotherms of carbon dioxide and methane mixtures were determined at 292 K and pressures up to 0.65 MPa. Adsorbed phase compositions were determined from the gravimetric data by the rigorous thermodynamic method of Van Ness.These experimental binary equilibrium data were compared with equilibrium data calculated by the Ideal Adsorbed Solution (IAS) model. Only moderate agreement could be obtained.Finally, activity coefficients, accounting for the non-ideality of the adsorbate mixture, were calculated from the experimental data. The Wilson equation, derived for bulk solutions, was fitted on these activity data and the Wilson interaction parameters were determined. The Wilson equation proved to correlate the experimental data reasonably. However, the Wilson interaction parameters are not only completely different from those found for bulk solutions, but also the physical interpretation of these parameter values is completely lacking.It is concluded that new solution models should be developed encompassing both non-ideal solution behaviour and surface heterogeneity.  相似文献   

16.
The adsorption of carbon dioxide and methane in nanoporous carbons in the presence of water is studied using experiments and molecular simulations. For all amounts of adsorbed water molecules, the adsorption isotherms for carbon dioxide and methane resemble those obtained for pure fluids. The pore filling mechanism does not seem to be affected by the presence of the water molecules. Moreover, the pressure at which the maximum adsorbed amount of methane or carbon dioxide is reached is nearly insensitive to the loading of preadsorbed water molecules. In contrast, the adsorbed amount of methane or carbon dioxide decreases linearly with the number of guest water molecules. Typical molecular configurations obtained using molecular simulation indicate that the water molecules form isolated clusters within the host porous carbon due to the nonfavorable interaction between carbon dioxide or methane and water.  相似文献   

17.
Oxidation of dilute methane in oxygen containing mixtures by atmospheric pressure dielectric barrier discharge at moderate temperature (below 150°C) has been studied with regard to the effect of water vapor. First, the impact of water vapor on methane conversion was studied in nitrogen. In dry nitrogen, methane was converted into hydrogen cyanide and hydrogen in the absence of oxidant. When water was added, it both acted as a scavenger in competition with methane for reactive nitrogen species and changed the reaction product speciation from HCN to carbon monoxide and carbon dioxide. The addition of water also led to the formation of hydrogen and nitrogen oxides. In the presence of oxygen, the addition of 1% water vapor enhanced methane conversion. Increasing water vapor content above 1% had a slight positive effect on methane conversion, and was found to enhance selectivity of the reaction products toward carbon dioxide over carbon monoxide.  相似文献   

18.
The adsorption of pure methane and ethane in BPL activated carbon has been measured at temperatures between 264 and 373 K and at pressures up to 3.3 MPa with a bench-scale high-pressure open-flow apparatus. The same apparatus was used to measure the adsorption of binary methane/ethane mixtures in BPL at 301.4 K and at pressures up to 2.6 MPa. Thermodynamic consistency tests demonstrate that the data are thermodynamically consistent. In contrast to two sets of data previously published, we found that the adsorption of binary methane/ethane in BPL behaves ideally (in the sense of obeying ideal adsorbed solution theory, IAST) throughout the pressure and gas-phase composition range studied. A Tian-Calvet type microcalorimeter was used to measure low-pressure isotherms, the isosteric heats of adsorption of pure methane and ethane in BPL activated carbon, and the individual heats of adsorption in binary mixtures, at 297 K and at pressures up to 100 kPa. The mixture heats of adsorption were consistent with IAST.  相似文献   

19.
A combined experimental and molecular simulation study of the coadsorption of CO2 and CH4 in porous carbons is reported. We address the effect of surface chemistry by considering a numerical model of disordered porous carbons which has been modified to include heterochemistry (with a chemical composition consistent with that of the experimental sample). We discuss how realistic the numerical sample is by comparing its pore size distribution (PSD), specific surface area, porous volume, and porosity with those for the experimental sample. We also discuss the different criteria used to estimate the latter properties from a geometrical analysis. We demonstrate the ability of the MP method to estimate PSD of porous carbons from nitrogen adsorption isotherms. Both the experimental and simulated coadsorption isotherms resemble those obtained for pure gases (type I in the IUPAC classification). On the other hand, only the porous carbon including the heterogroups allows simulating quantitatively the selectivity of the experimental adsorbent for different carbon dioxide/methane mixtures. This result shows that taking into account the heterochemistry present in porous carbons is crucial to represent correctly adsorption selectivities in such hydrophobic samples. We also show that the adsorbed solution theory describes quantitatively the simulated and experimental coadsorption isotherms without any parameter adjustment.  相似文献   

20.
Experimental data on the equilibrium adsorption of sulfur hexafluoride, methane, carbon dioxide, and benzene on carbon adsorbents of different porosity obtained in a wide pressure range at 298–408 K were analyzed. The adsorption volumes, surface areas, and sizes of slit-shaped pores of the carbons were determined using several independent methods. A method for determination of the adsorption volume from the experimental isotherm of excessive adsorption of gases and the total content equation was proposed. The resulting values are similar to the adsorption volumes calculated from the data for vapors. A new method for the calculation of the adsorbent surface area is described. The method is based on the dependence of the adsorption volume of adsorbent pores on the effective size of adsorbate molecules. A possibility to determine the average size of narrow slit-shaped carbon pores from the difference of the initial heats of adsorption of the gas under study on the carbon black and porous carbon adsorbent is considered. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2219–2227, October, 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号