首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vacuum circuit breakers the post-arc current caused by the remaining ions and electrons in the contact gap is an indication of the residual ionization and its decay. It coincides with the formation of a positive space charge sheath in front of the new cathode, which grows toward the new anode. In a vacuum test chamber an arc (1.5-15 kA RMS) is drawn between high current electrodes of the spiral type. At different times after current zero a transient recovery voltage is applied across a separate pair of high voltage electrodes. In contrast to real circuit breakers, where the transient recovery voltage reappears between the arcing contacts, this separation allows the study of residual plasma free from the thermal stress and melting on the contact surfaces. From the post-arc current across these electrodes, in comparison with a mathematical model of sheath growth, the density of the charge carriers can be evaluated. Such values and their temporal decay are presented  相似文献   

2.
Recovery of dielectric strength and post-arc currents after diffuse and constricted vacuum arcs were measured for filat OFHC-Cu contacts (D = 25 mm, d = 7.5 mm) enclosed in a bakable UHV chamber. The arc current pulse had a trapezoidal shape of 5.5-ms duration with peak values up to 11 kA. In comparison with the fast recovery of diffuse arcs, the recovery of constricted arcs with gross melting is considerably retarded. Post-arc currents are simulated using the Andrews-Varey model extended to include the effects of secondary electron emission due to ion bombardment of the cathode and loss of the plasma due to thermal motion. The flow of charge carriers to the anode and the shield, which is at the anode's potential, are registered separately. The amount and decay of the residual plasma is evaluated from the measurements of post-arc current. The decay times of a few tens of a microsecond give evidence of ions with energies below 1 eV. The origin and effect of slow ions on recovery is discussed.  相似文献   

3.
Post-arc current and voltage measurements with high time resolution were carried out with industrial vacuum circuit breakers for investigating their current zero conditions and current interruption. Based on experimental results, plasma parameters were estimated by means of a modified “continuous transition model.” Dielectric effects in the post-arc current zero region were detected and modeled. At lower current amplitudes (Iˆ<16 kA), typical post-arc currents were obtained. At higher current amplitudes, the probability of higher post-arc current charges increases without the occurrence of breakdowns. It has been shown that charge generation takes place in the post-arc current region  相似文献   

4.
This report presents a theoretical model of development of the post-arc gap breakdown in vacuum as a result of surface processes following cathode bombardment by energetic ions flowing from residual plasma after zero arc current. The most important surface processes for this model are sputtering and secondary electron emission. For a considerable group of metals, the sputtering yield Sr and secondary electron emission ?c can assume relatively high values when the ions have a high energy. Based on the ion flux from the plasma and the time of its flow as well as the ionization of sputtered atoms, a quantitative criterion for a breakdown will be derived. It has been proven that breakdown will occur if there is at least a minimum ion charge Qi which is dependent on the product of Sr · ?c. Qualitative consistency was also demonstrated between experimental results and the conclusion derived from our breakdown criterion.  相似文献   

5.
Based on a large number of measurements of high-frequency (HF) current interruptions in vacuum at small contact gaps (⩽600 μm), the statistical reignition behavior of vacuum switching devices after a HF current zero is investigated. Three types of reignitions can be classified. Statistical evaluation of post-arc current measurements for different parameters at current zero and different HF current ignition processes gives information about the stress of the gap as a result of the transient recovery voltage after a HF current zero (HF-TRV) and the accumulated post-arc charge. Comparing post-arc current values at the beginning of the HF-TRV and at the moment of reignition reveals a production of charge carriers during the recovery interval. Possible reasons for the different types of reignitions are discussed  相似文献   

6.
A model is proposed for the multicathode-spot (MCS) vacuum arc. A zero-order model is filrst constructed, whereby the interelectrode plasma is produced by the multitude of cathode spots, and flows to the anode upon which it condenses. The electron density is calculated by assuming that the plasma is uniform within a cylinder bounded by the electrodes and using expenmental data for the ionic velocities and ion current fraction obtained in single cathode spot arcs. The electron density thus obtained is proportionate to the current density, and is equal to 5 × 1020 m-3 in the case of a 107-A/m2 Cu arc. The model predictions are a factor of 3-4 lower than measured values. First-order perturbations to the zero-order model are considered taking into account inelastic electron-ion collisions, plasma-macroparticle interactions, the interaction of the self-magnetic field with the plasma and electric current flows, and the interaction with the anode. Inelastic collisions tend to increase the ionicity of the plasma as a function of distance from the cathode, in agreement with spectroscopic observations. Macroparticles are heated by ion impact until they have significant evaporation rates. The vapor thus produced is ultimately ionized, and most probably accounts for the discrepancy between the zero-order prediction of electron densities and the measured values. Constrictions near the anode in both the plasma and electric current flows have been calculated. An overabundant electron current supply forces the anode to assume a negative potential with respect to the adjacent plasma.  相似文献   

7.
Events associated with the rapid commutation of the current in a diffuse vacuum arc are explored experimentally and analytically in the short interval during which the current is brought to zero and the recovery voltage is established across the residual plasma. A brief pause of the order of 100 ns is observed between the passage of current through zero and the point where the recovery voltage starts to rise. Current zero is interpreted as the instant when the ion and electron currents are equal. During the subsequent pause the electrons are brought to rest and only then does a positive ion sheath develop, allowing voltage to build up across it. The charge remaining in the gap at current zero is observed to depend on the initial steady-state current and the rate at which the current is ramped to zero. Qualitative agreement is obtained by analysis, but the decay of the charge residue appears to be more rapid than the analysis predicts.  相似文献   

8.
Rapid commutation of a vacuum arc prior to zero results in the postarc current that subsequently flows due to the transient recovery voltage (TRV) developing across the interelectrode gap. If the rate of change of the arc current exceeds the ability of the device to interrupt the condition, it can be reestablished in the reverse direction, i.e. what was the anode becomes the new cathode. An attempt to model the postcurrent zero phenomena in the light of gas dynamics as applied to the plasma of the metal vapor arc is described. The basic conservation laws and the Maxwell equations, as well as the current continuity law, are formulated and the solutions of those equations are presented. The short distance between the electrodes in practice of much less than a millimeter is specifically noted  相似文献   

9.
This paper presents the results of ion parameters measured during a forced current commutation of a diffuse vacuum arc, aimed at evaluating the role of ions in discharges occurring rarely after the counterpulse commutation process, in a contact arrangement corresponding to a low-voltage vacuum switch. A sinusoidal half-wave current was interrupted near its amplitude of 400 A with a counterpulse of rise velocities 2.4 and 32 A/μs. In this way, a forced switching off of dc current was modeled. A retarding field analyzer was used for ion parameter measurements at the forced commutation process. Ion potentials up to 100 V were measured at the current zero moment, and the average decay times of ions after current zero were in the range from a few microseconds up to 30 μs as a function of observed ion potential. The measured values of decay times show the rather negligible role of ions in the discharge process after the counterpulse commutation in the examined contact arrangement. The rise time of the countercurrent is proposed as a factor in the successful forced current commutation under these conditions, and values up to a few amperes per microsecond of countercurrent rise velocity can be considered as the limit value  相似文献   

10.
 主要研究了阴阳极等离子体运动对“闪光二号”加速器强箍缩离子束二极管束流特性的影响。给出了考虑阴阳极产生的等离子体运动对二极管间隙影响的Child-langmuir流、弱聚焦流、强聚焦流和饱和顺位流4个阶段的离子流和二极管总束流修正公式,利用这些修正公式计算的二极管总束流和离子束流强度与实测结果符合很好,在此基础上分析了提高离子束流强度和效率的方法,通过调整加速器参数,实验得到了峰值能量约500 keV,峰值电流约160 kA的高功率离子束。  相似文献   

11.
《Current Applied Physics》2015,15(12):1599-1605
In this paper, we have investigated the feasibility of the high current beam extraction from anode spot plasma as an ion source for large area ion implantation. Experiments have been carried out with the ambient plasma produced by inductive coupling with radio-frequency (RF) power of 200 W at the frequency of 13.56 MHz. Anode spot plasmas are generated near the extraction hole of 2 mm in diameter at the center of a bias electrode whose area exposed to the ambient plasma can be changed. It is found that the maximum ion beam current is extracted at the optimum operating pressure at which the area of bias electrode exposed to ambient plasma is fully covered with the anode spot plasma whose size is dominantly determined by the operating pressure for given gas species. It is also observed that the extracted ion beam current increases nonlinearly with the bias power due to the changes in size and shape of the anode spot plasma. With the well-established anode spot plasma operating at the optimum gas pressure, we have successfully extracted high current ion beam of 6.4 mA (204 mA/cm2) at the bias power of 22 W (∼10% of RF power), which is 43 times larger than that extracted from the plasma without anode spot. Based on the experimental results, criteria for electrode design and operating pressure for ion beam extraction from larger extraction aperture are suggested. In addition, the stability of anode spot plasma in the presence of ion beam extraction through an extraction hole is discussed in terms of the particle balance model.  相似文献   

12.
For commercial vacuum circuit interrupter valves with radial field contact, the post-arc current (PAC) waveform was measured after short circuit current interruption applying a transient recovery voltage (TRV) of about 15 kV/s (RRRV). Keeping the current decline di/dt at current zero constant, the power frequency (PF) current amplitude IˆPF was varied from 0.5 up to two times of the rated short circuit current. Significant influence of IˆPF on the gaps memory is shown in particular effecting the post-arc current duration which varies in a range between 2 and 8 μs. Based on the existing physical models an interpretation of the results is given. It is shown that the memory effect influences the gap recovery time. The experimental results were further used to determine the parameters of the sheath growth model described by Andrews and Varey (1971). The initial ion density is fitted according to the current ramp di/dt before current zero (CZ) and according to the measured QPF=∫i PF×dt during the arcing phase. The results of two different test procedures were applied in order to separate the effect of current ramp di/dt and QPF=∫iPF×dt. The influence of both parameters and of the rate of rise of the recovery voltage du/dt (RRRV) on the sheath edge velocity could be demonstrated by simulation  相似文献   

13.
Intense ion beams are produced in high-power vacuum diodes of various configurations and are believed to be useful for applications in inertial confinement fusion and plasma confinement. Using magnetically insulated diodes, we investigated spatial nonuniformities of the diode plasmas, plasma expansion, ion transverse velocities in the diode gap, electron flow to the anode, and the charge distribution in the gap. Various time-dependent diagnostic techniques including recently developed spectroscopic methods have been used. We observed rapid closure of the diode gap, resulting from fast expansion of the electric field-excluding anode plasma early in the pulse. This contributes significantly to the measured ion current density enhancement. The electron cloud in the gap was seen to spread towards the anode beyond the region of the theoretical electron sheath. This is consistent with observed ion current densities being larger than the values calculated using the actual diode gap. The ion angular spread was found to increase locally due to nonuniform expansion of the cathode plasma for one class of phenomena and of the anode plasma for the other two classes. Part of these phenomena were associated with electron flow to the anode. The ion divergence angle in the gap was observed to be independent of the ion mass and to be significantly smaller than angles previously observed outside the diode.  相似文献   

14.
The discharge characteristics and the parameters of the cathode plasma in a two-stage ion source with a grid plasma cathode and a magnetic trap in the anode region are investigated. It is shown that an increase in the gas pressure and the accompanying increase in the reverse ion current in the bipolar diode between the cathode and anode plasmas lead to an increase in the cathode plasma potential and a transition of the cathode into the regime of electron emission from the open plasma boundary. The dependence of the ion current extracted from the anode plasma on the area of the exit aperture of the hollow cathode and the mesh size of the grid plasma cathode is explained. The conditions at which the ion emission current from the anode plasma is maximum are determined. The potential difference at the bipolar diode is measured by using the probe method. It is shown that, when the gas pressures reaches a critical value determined by the mesh size of the grid plasma cathode, the discharge passes into a contracted operating mode, in which the ion current extracted from the anode plasma decreases severalfold.  相似文献   

15.
This paper represents the results of the optimisation of cold cathode ion source model with 5 cm extraction aperture diameter. In this model, the glow discharge is utilised for generation of electrons in the cathode of the ion source. The various models with different lengths of cathode and anode are tested. The shortest model with 4.5 cm in length of cathode and anode each shows satisfactory operation and can be used in cases when the high values of extracted ion current are not required. The best model from the point of view of ion beam current value and efficiency of the discharge is the model with cathode length of 7 cm and anode length of 7 cm. In this case, the obtained maximum ion beam current is 110 mA when the discharge current is 1000 mA. In case when moderate values of extracted ion beam current are necessary, it is possible to operate the ion source even without the anode magnetic system.  相似文献   

16.
We have clarified the relation between the decay of tungsten ion density in the vicinity of current zero and vacuum arc mode in high current period by using a laser induced fluorescence method in tungsten vacuum arcs of 60 Hz sinusoidal current with the peak value of 3.3, 6.7, and 9.8 kA. In the case of 6.7 kA, the arc mode was the anode spot mode. Because of the generation of the anode spot, the tungsten ion density near the anode was higher than near the cathode and the density near the anode was about ten times as high as the case of 3.3 kA which was the diffuse mode. In the case of 9.8 kA, which was the intense arc mode, the density near the anode was not significantly different from the case of 6.7 kA. The density near the cathode was higher than near the anode and tungsten ions were observed till about 30 μs after current zero while they disappeared at current zero in the other cases  相似文献   

17.
Ions with Maxwellian energy distributions and kinetic temperatures up to seven keV have been observed in a modified Penning discharge. Investigation of the plasma revealed two distinct spoke-like concentrations of charge, consisting respectively of ions and electrons, rotating with different velocities in the sheath between the plasma and the anode ring. Theoretical expressions are derived for the frequency of the ion and electron spoke rotation, for the ion kinetic temperature resulting from the ion spoke velocity, and for the ion heating efficiency. An extensive series of experimental measurements were made to check these theoretical expressions, and approximate agreement was obtained. It is shown that the ion kinetic temperature in the modified Penning discharge scales according to the relation Vi ~ Vani1/4/B1/2 where Va is the applied anode voltage, ni is the ion density in the sheath, and B is the magnetic field strength. The observed data demonstrate that the ion heating efficiency can be as high as several tens of percent.  相似文献   

18.
A model of the unstable stage of a spark discharge in vacuum is proposed, which describes all typical manifestations of this stage, including current spikes in the diode, an increase in the potential at the cathode flame front, collective acceleration of ions in vacuum and plasma diodes, change in the cathode erosion mechanism, and the emergence of electron microbeams with a high current density at the anode. It is shown that these processes are associated with the formation of a charged electron layer of a spatially inhomogeneous plasma at the cathode flame boundary at the unstable stage of the spark discharge in vacuum. The emergence of this layer is associated with a limited emissive ability of the plasma at the cathode flame front during its expansion in vacuum. This leads to disruption of the plasma (field-induced emission of electron from the boundary region of the flame) and the formation of a short-lived charged plasma, viz., high-density ion cluster at the cathode flame boundary. The estimates obtained using this model are in good agreement with the experimental data on physical processes at the unstable stage of a vacuum spark discharge.  相似文献   

19.
In this paper several aspects of circuit modeling of a vacuum gap during breakdown are improved or introduced for the first time. More accurate perveance formulas are derived by the method of tracing electron trajectories in the self-consistent electric field calculated by the finite element method. The formula for maximum anode current density is also derived by the same method. A practical model of anode heating is proposed, by which transient anode temperature is calculated coupled with gap voltage and current, providing more accurate modeling of anode plasma initiation. The circuit model of a vacuum gap during breakdown incorporating all these features is implemented as a subcircuit element in the PSPICE  相似文献   

20.
Results are presented from studies of the ion-emission properties of the anode plasmas of low-pressure contracted arc discharges and vacuum arcs. It is shown that creating a longitudinal magnetic field in the anode region of a discharge changes the plasma parameters significantly and facilitates a large increase in the ion current. Space charge limited ion current in a vacuum arc leads to a reduction in the noise level of the total ion current and of its components with charges of up to +3, while creating Penning discharge conditions ensures that ions of different gases can be generated in this discharge system at fractions as high as 90%, depending on the type of plasma forming gas.Institute of High-Current Electronics, Siberian Branch, Russian Academy of Sciences. Translated from Izvestiya Vuzov, Fizika, No. 3, pp. 24–33, March, 1994.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号