首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 830 毫秒
1.
多孔脆性介质冲击波压缩破坏的细观机理和图像   总被引:1,自引:0,他引:1       下载免费PDF全文
喻寅  王文强  杨佳  张友君  蒋冬冬  贺红亮 《物理学报》2012,61(4):48103-048103
本文采用一种具有良好定量性质的离散元模型研究了带孔洞的各向同性脆性介质在细观尺度上的压缩破坏特征. 通过对孤立孔洞、三种简单的孔洞排布方式和大量孔洞随机排布等几种情况的模拟, 认识到了剪切破坏和局域拉伸破坏是冲击波压缩下多孔介质的基本破坏模式; 孔洞之间的损伤贯通会促进孔洞在较低应力下发生塌缩, 但损伤区的应力松弛过程却会对一定范围内的介质起到损伤屏蔽作用; 不同区域中损伤促进和损伤屏蔽的综合效果是在多孔脆性介质中形成一种高损伤区与低损伤区间错排布的奇特损伤分布. 本文的研究结果为深入理解脆性材料冲击波压缩破坏的演化过程和机理提供了细观尺度上的初步物理图像.  相似文献   

2.
喻寅  贺红亮  王文强  卢铁城 《物理学报》2014,63(24):246102-246102
微孔洞显著地影响着脆性材料的冲击响应,理解其介观演化机制和宏观响应规律将使微孔洞有利于而无害于脆性材料的工程应用.通过建立能够准确表现材料弹性性质和断裂演化的格点-弹簧模型,本文揭示了孔洞的演化对于脆性材料的影响.冲击下孔洞导致的塌缩变形和从孔洞发射的剪切裂纹所导致的滑移变形产生了显著的应力松弛,并调制了冲击波的传播.在多孔脆性材料中,冲击波逐渐展宽为弹性波和变形波.变形波在宏观上类似于延性金属材料的塑性波,在介观上对应于塌缩变形和滑移变形过程.样品中的气孔率决定了脆性材料的弹性极限,气孔率和冲击应力共同影响着变形波的传播速度和冲击终态的应力幅值.含微孔洞脆性材料在冲击波复杂加载实验、功能材料失效的预防、建筑物防护等方面具有潜在的应用价值.所获得的冲击响应规律有助于针对特定应用优化设计脆性材料的冲击响应和动态力学性能.  相似文献   

3.
多孔脆性材料对高能量密度脉冲的吸收和抵抗能力   总被引:2,自引:0,他引:2       下载免费PDF全文
喻寅  贺红亮  王文强  卢铁城 《物理学报》2015,64(12):124302-124302
作用在脆性结构材料表面的高能量密度脉冲会以冲击波的形式传播进入材料内部, 导致压缩破坏和功能失效. 通过设计并引入微孔洞, 显著增强了脆性材料冲击下的塑性变形能力, 从而使脆性结构材料可以有效地吸收耗散冲击波能量, 并抑制冲击诱导裂纹的扩展贯通. 建立格点-弹簧模型并用于模拟研究致密和多孔脆性材料在高能量密度脉冲加载下的冲击塑性机理、能量吸收耗散过程和裂纹扩展过程. 冲击波压缩下孔洞塌缩, 导致体积收缩变形和滑移以及转动变形, 使得多孔脆性材料表现出显著的冲击塑性. 对致密样品、气孔率5%和10%的多孔样品吸能能力的计算表明, 多孔脆性材料吸收耗散高能量密度脉冲的能力远优于致密脆性材料. 在短脉冲加载下, 相较于遭受整体破坏的致密脆性材料, 多孔脆性材料以增加局部区域的损伤程度为代价, 阻止了严重的冲击破坏扩展贯通整个样品, 避免了材料的整体功能失效.  相似文献   

4.
This paper presents the results of measurements of the strength properties of technically pure tantalum under shock wave loading. It has been found that a decrease in the grain size under severe plastic deformation leads to an increase in the hardness of the material by approximately 25%, but the experimentally measured values of the dynamic yield stress for the fine-grained material prove to be less than those of the initial coarse-grained specimens. This effect has been explained by a higher rate of stress relaxation in the fine-grained material. The hardening of tantalum under shock wave loading at a pressure in the range 40–100 GPa leads to a further increase in the rate of stress relaxation, a decrease in the dynamic yield stress, and the disappearance of the difference between its values for the coarse-grained and fine-grained materials. The spall strength of tantalum increases by approximately 5% with a decrease in the grain size and remains unchanged after the shock wave loading. The maximum fracture stresses are observed in tantalum single crystals.  相似文献   

5.
 利用高速摄影和金相分析研究了不同热处理状态的铍青铜(QBe2)柱壳在爆轰加载下的膨胀断裂特性。研究表明:材料的细观组织决定材料的静态力学性能与动态断裂性能。当同种材料的组织结构有较大差异时,材料的静态力学性能及动态断裂性能均会有较大改变;当材料的基体组织没有明显变化、只是基体中强化相的多少发生改变时,材料的静态力学性能会有较大差异,而材料的动态断裂性能将没有明显变化,原因在于造成静态力学性能差异的强化相在爆轰加载下的性能趋于一致。  相似文献   

6.
The damages that form in plane targets made of three steel grades during their shock loading at a rate of 100–650 m/s are statistically processed, and the size distributions of defects are determined. In the general case, the damage accumulation in this strain rate range is shown to be not self-similar. The dynamic fracture toughnesses of the steels are determined, and this characteristic is found to be related to a change in the mechanical properties of the material and the particle velocity range in it on the structural level of the meso II scale.  相似文献   

7.
The time ranges of the fracture of polymethylmethacrylate and polystyrene during the action of a shock wave generated by a high-current pulsed electron beam are experimentally determined using laser probing in combination with electron-optical chronography. It is shown that fractures occur during unloading of a material, i.e., after the passage of the shock wave. Although the characters of fracture of these polymers near the surface irradiated by electron beam are different, the fracture wave velocities in them are found to be close.  相似文献   

8.
采用PVDF贴片传感器对脉冲激光作用下2024铝合金表面的动态应变进行了测量,分析了动态应变曲线的特性。结果表明,PVDF贴片传感器在动态应变测量中动态响应快,灵敏度高,可有效应用于脉冲激光诱导材料表面动态应变的实时测量。脉冲激光作用过程中,2024铝合金冲击光斑周围材料先受挤压,后压应变减小。脉冲激光作用结束后,2024铝合金冲击光斑周围材料表面粒子在卸载稀疏波和表面稀疏波的作用下不断往复运动,冲击光斑周围材料甚至受到了拉应变的作用。最后随着时间的推移,材料表面粒子的动态响应经反复震荡后逐渐衰弱形成最终的稳定状态。  相似文献   

9.
10.
Morozov  V. A.  Petrov  Yu. V.  Sukhov  V. D. 《Technical Physics》2019,64(5):642-646
Technical Physics - The study of fracture of thin aluminum rings due to shock loading generated by magnetic-pulse method was performed. This method provides experimental results on dynamic fracture...  相似文献   

11.
The mechanics of crack tip plasticity in dynamic crack growth is considered as it influences two modes of dynamic fracture—cleavage and micro-void nucleation, growth and coalescence. The subject is approached using both the continuum theory of visco-plasticity and dislocation dynamics. The viewpoint underlying each approach is that the crack is traveling through material with a relatively high density of pre-existing mobile dislocations. Analysis is directed at discovering the role played by the associated rate-dependent plasticity in establishing conditions for dynamic crack propagation. The theory is far from complete, but the contents of the paper should serve to aid understanding of basic material fracture phenomena, such as cleavability and the ductile-brittle transition, as well as provide a background for the engineering theory of dynamic fracture.  相似文献   

12.
A new approach to studying the dynamic strength properties of structural materials is demonstrated with fracture of 2024-T3 aircraft aluminum alloy. The central idea of this approach is the incubation time to failure. In [1], experimental data for dynamic fracture of this alloy were analyzed in terms of the classical fracture criterion, which is based on the principle of maximum critical stress intensity factor [2]. In [1], the dependence of the stress intensity factor limiting value (the dynamic fracture toughness KId, which was assumed to be a functional characteristic of the material) on the loading rate was also measured. The same experimental data were analyzed in terms of an alternative structure-time approach [3]. In this approach, the dynamic fracture toughness KId is considered as an estimable characteristic of the problem, so that determination of limiting loads does not require a priori knowledge of the loading-rate dependence of the dynamic fracture toughness. The incubation time to failure of the aircraft aluminum alloy is calculated. The difference in the loading-rate dependences of the dynamic fracture toughness, which is observed for various structural materials, is explained. The dynamic fracture toughness of the alloy under pulsed threshold loads is calculated.  相似文献   

13.
Abstract

A method for plate-impact dynamic compaction of copper powder has been developped. The optimization of the experimental set-up (impedance adjustments, tensile wave traps, relative thickness of impactor and target,…) is presented.

2D axisymetrical numerical simulations have been performed with a Lagrangian finite element code. Geometrical characteristics of the experimental set-up as well as the dynamic response of the powder (Reaugh equation of state) and of the material of the set-up have been taken into account. These simulations show that, due to the difference in shock velocities in the container and in the powder, the powder is submitted to 2D loading waves. As a matter of fact the powder may be loaded by a non-planar shock wave propagating in the as-expected direction, as well as by a sweeping wave initiated at the bottom of the powder container, and propagating obliquely from the bottom-up. This second wave loads the bottom of the powder first. The influence of the impactor thickness as well as its material on the shock front shape and on the shock density-pressure history of the material has been studied. 1D simulations are shown not to evaluate properly the stress history and the energy deposition in the powder sample.

Metallographic observations as well as X-ray tomography experiments have been performed on consolidated samples. A very good agreement has been found between results of 2D numerical simulations and the observed final shape and density maps of the samples. The shape of deformed powder particles are also in agreement with the expected shock history.  相似文献   

14.
利用ABAQUS有限元软件进行了单个圆形高斯光斑的激光冲击强化数值模拟,分析材料表面光斑中心区域形成的"残余应力洞"现象,并通过分析材料的动态力学响应特征揭示了"残余应力洞"的形成机制。结果表明:在冲击波加载时,光斑边界处会产生很强的剪切应力,形成向四周传播的表面稀疏波和向材料内部传播的剪切波。当稀疏波同时传播到光斑中心,发生相遇、汇聚,使材料产生急剧的上下位移过程,造成冲击波加载塑性变形后的二次塑性变形。二次塑性变形中形成了较大的剪切塑性应变,并降低了冲击波加载阶段产生的轴向和径向塑性应变,使残余压应力降低,从而形成"残余应力洞"。  相似文献   

15.
A hybrid VOF and PIC multi-material interface treatment method for Eulerian method is presented in this study in order to solve the problem that the Eulerian method is not robust enough to treat the dynamic fracture of material. This treatment method is used in the important computational region such as the material interface,large deformation region and fracture region where more particles are added for calculation,while the continuous transport method is used in the other regions. Through this method,a se...  相似文献   

16.
基于嵌入式离散裂缝模型, 提出一种可在三维空间中考虑应力状态影响的裂缝动态闭合表征方法。将任意方向裂缝的开度和渗透率考虑为作用在裂缝平面法向有效应力的函数, 同时用裂缝传导率变化表征支撑剂充填的水力压裂缝与被开启的天然裂缝由于油藏开发过程中地层流体压力下降而发生的动态闭合行为。研究表明: 致密油藏开发以缝控储量为主。对压裂水平井进行产能评价时, 裂缝动态闭合会导致产能的部分损失, 其影响不可忽略; 水力压裂缝的支撑剂材料属性及天然裂缝的刚度是其中的主控因素。因此需要增大支撑剂的浓度、粒径大小并改善支撑剂的性质, 在最大程度上降低裂缝闭合对生产的不利影响。  相似文献   

17.
The paper studies the localization of plastic deformation and fracture in a material with a porous coating. A dynamic boundary value problem in the plane strain formulation is solved. The numerical simulation is performed by the finite difference method. The composite structure corresponds to the experimentally observed one and is specified explicitly in the calculation. A generation procedure of the initial finite-difference grid is developed to describe the coating structure with adjustable porosity and geometry of the substrate-coating interface. Constitutive equations for the steel substrate include an elastic-plastic model of an isotropically hardening material. The ceramic coating is described by a brittle fracture model on the basis of the Huber criterion which accounts for crack nucleation in triaxial tension zones. It is shown that the specific character of deformation and fracture of the studied composite results from the presence of local tensile regions in the vicinity of pores and along the coating-substrate interface, in both tension and compression of the coated material. The interrelation between inhomogeneous plastic flow in the steel substrate and crack propagation in the coating is studied.  相似文献   

18.
Dynamic interactions between the propagating crack and the static crack in PMMA material are studied by combining high-speed Schardin camera with optical caustic method. A series of dynamic optical bifocal patterns (the specimen-focused image and the off-focused image) around the propagating crack tip and the static crack tip are recorded for PMMA thin strip which contains two collinear-edge-cracks subjected to tensile loading, the variations of the caustic diameter and the distortion of the caustic shape are revealed due to the influence of local stress singularity at the crack tip. Interactions between the moving crack and the static crack are analyzed by means of the evolution of dynamic fracture parameters. The influence of crack interaction on fracture parameters is discussed based on both a K-dominance assumption and a higher order transient crack-tip expansion. These results will be useful to the evaluation of dynamic properties and the design of structures in the cracked polymer material.  相似文献   

19.
李雪梅  俞宇颖  张林  李英华  叶素华  翁继东 《物理学报》2012,61(15):156202-156202
利用平板撞击和激光干涉测试技术对<100> LiF在40 GPa内的冲击力学和光学特性进行了精密实验测量和理论分析. 获得了该压力范围内LiF的冲击雨贡纽关系和1550 nm波长下的窗口速度修正, 为相关加窗激光干涉测速实验的数据分析提供了直接依据. LiF在20.3 GPa内均表现出弹性-塑性双波特性, 预计其单波响应冲击压力下限约为22—23 GPa; 低于此压力时, 以LiF为窗口的精密剖面测量实验需考虑其强度影响.  相似文献   

20.
Based on experimental research in shock loading of solid-state materials it is shown that among the important dynamic characteristics of the process, like spatial-temporal mass velocity profiles of shock waves, are the mass velocity variation, velocity defect, and structural instability threshold recorded in real time. Analysis of these characteristics depending on the strain rate, target thickness, and structural state of material demonstrates that conventional approaches of continuum mechanics fail to provide their adequate interpretation and simulation of shock wave processes. A new concept of shock wave processes in condensed media is proposed. The concept, being based on nonlocal nonequilibrium transport theory, allows describing the transition from elastic to hydrodynamic response of a medium depending on the loading rate and time. A nonstationary elastoplastic wave model is proposed for describing the relaxation of an elastic precursor and formation of a retarded plastic front during the wave propagation in a medium with regard to structural evolution. Analysis of the experimental data shows that the division of stresses and strains into elastic and plastic components is incorrect for shock loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号