首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Huang HY  Chiu CW  Huang IY  Yeh JM 《Electrophoresis》2004,25(18-19):3237-3246
Five common food preservatives were analyzed by capillary electrochromatography, utilizing a methacrylate ester-based monolithic capillary as separation column. In order to optimize the separation of these preservatives, the effects of the pore size of the polymeric stationary phase, the pH and composition of the mobile phase on separation were examined. For all analytes, it was found that an increase in pore size caused a reduction in retention time. However, separation performances were greatly improved in monolithic columns with smaller pore sizes. The pH of the mobile phase had little influence on separation resolution, but a dramatic effect on the amount of sample that was needed to be electrokinetically injected into the monolithic column. In addition, the retention behaviors of these analytes were strongly influenced by the level of acetonitrile in the mobile phase. An optimal separation of the five preservatives was obtained within 7.0 min with a pH 3.0 mobile phase composed of phosphate buffer and acetonitrile 35:65 v/v. Finally, preservatives in real commercial products, including cold syrup, lotion, wine, and soy sauces, were successfully determined by the methacrylate ester-based polymeric monolithic column under this optimized condition.  相似文献   

2.
Hybrid silica monolithic stationary phase functionalized with octyl groups was synthesized by a two-step acid/base-catalyzed hydrolysis/co-condensation of tetraethoxysilane (TEOS) and n-octyltriethoxysilane (C(8)-TEOS). The influences of determining factors in the sol-gel process such as the monomer ratio and water content on the monolith formation were systematically investigated. An increase in the TEOS/C(8)-TEOS ratio in the polymerization mixture shifted the pore size distribution towards smaller pore diameter with larger pore volume. The optimal TEOS/C(8)-TEOS volume ratio was found to be 90/50, under which condition the median pore diameter of the monolith was around 1.0 microm with pore volume of 3.25 cm(3)/g. The chromatographic characteristics of the monolithic column prepared with the optimized fabrication condition were studied. Some aromatic compounds including alkylbenzenes, polycyclic aromatic hydrocarbons (PAHs) and phenols were successfully separated on the octyl-functionalized silica monolithic column with high column efficiency up to 180,000 plates/m.  相似文献   

3.
Monolithic poly(lactic acid) (PLA) foams were produced by thermally induced phase separation. PLA solutions with concentrations 8–22 wt % were prepared in tetrahydrofuran/methanol (THF/MeOH) solvent/nonsolvent mixtures at 55 °C. Homogenous solutions were quenched at ?20 °C to induce phase separation and gelation. Resulting gels were mechanically stabilized by solvent exchange. Subsequent supercritical CO2 drying yielded monolithic PLA foams. Crystal structure and degree of crystallinity of the foams were obtained by x‐ray diffractometry and differential scanning calorimetry. Morphologies were determined by scanning electron microscopy. Tuning the PLA concentration and THF/MeOH ratio enabled preparation of monolithic PLA foams. Depending on the experimental conditions various morphologies, such as: interconnected networks, thin platelets, lamellar stacks, axialites, and spherulites were formed. Monoliths obtained were highly crystalline. By changing the PLA concentration monoliths with controlled average pore sizes (170–1440 nm) and porosities (80–90%) were produced. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 98–108  相似文献   

4.
利用元素分析、红外光谱、扫描电镜及汞压吸附法对制备的聚硅氧烷包夹硅基反相高效液相色谱固定相进行了表征,给出了该固定相的结构信息及其与色谱性能的关系;用滴定法测定了该固定相表面硅羟基数目;考察了该固定相对碱性化合物的分离性能;由表征和色谱性能考察结果可知,该固定相表面的羟基基本被覆盖,因此,可在碱性流动相中长期使用。  相似文献   

5.
Silica-based monolithic columns were prepared for HPLC with systematic variations of the tetramethoxysilane (TMOS) and polyethylene oxide (PEO) content as reactants in a sol-gel process accompanied by phase separation. The resulting monoliths showed differences in the macropore and silica skeleton diameter as well as in the corresponding domain sizes (the sum of macropore and skeleton diameter). All monoliths were synthesized with a diameter of 4.6 mm and cladded with a suitable polyaryletheretherketone (PEEK) polymer in a standardized and optimized manner for the subsequent chromatographic evaluation of the resulting monolithic HPLC columns. The columns were tested under normal phase conditions using n-heptane/dioxane (95:5 v/v) as a mobile phase and 2-nitroanisole as a test compound for the determination of separation efficiency and permeability. Two different sets of columns were prepared: the first one in which the amount of PEO was stepwise decreased to yield monoliths with identical macropore volumes and variations in the domain sizes. The second group of materials was synthesized adjusting both TMOS and PEO quantities to yield monolithic columns with identical macropore diameters of about 1.80 microm but different skeleton diameters and macropore volumes. The chromatographic results suggest that an increase in the column performance cannot be achieved by just arbitrarily decreasing the domain size of a given column. From a certain point of "downsizing" the monolithic structure a loss of structural homogeneity can be observed, which is apparently responsible for a lower chromatographic performance.  相似文献   

6.
Monolithic capillary columns have been prepared in fused‐silica capillaries by radical co‐polymerization of ethylene dimethacrylate and butyl methacrylate in the presence of porogen solvent mixtures containing various concentration ratios of 1‐propanol, 1,4‐butanediol, and water with azobisisobutyronitrile as the initiator of the polymerization reaction. The through pores in organic polymer monolithic columns can be characterized by “equivalent permeability particle size”, and the mesopores with stagnant mobile phase by “equivalent dispersion particle size”. Increasing the concentration of propanol in the polymerization mixture diminishes the pore volume and size in the monolithic media and improves the column efficiency, at a cost of decreasing permeability. Organic polymer monolithic capillary columns show similar retention behaviour to packed alkyl silica columns for compounds with different polarities characterized by interaction indices, Ix, but have different methylene selectivities. Higher concentrations of propanol in the polymerization mixture increase the lipophilic character of the monolithic stationary phases. Best efficiencies and separation selectivities were found for monolithic columns prepared using 62–64% propanol in the porogen solvent mixture. To allow accurate characterization of the properties of capillary monolithic columns, the experimental data should be corrected for extra‐column contributions.  相似文献   

7.
In order to elucidate the role of the flow-through characteristics with regard to the column performance in high-performance liquid chromatography (HPLC) native and n-octadecyl bonded monolithic silica rods and columns, respectively of 100 mm length and 4.6 mm ID with mesopores in the range between 10 and 25 nm and macropores in the range between 0.7 and 6.0 μm were examined by mercury intrusion/extrusion, scanning electron microscopy, image analysis and permeability. The obtained data of the flow-through pore sizes and porosity values as well as surface-to-volume ratio of the stationary phase skeleton enabled to predict their influence to the chromatographic separation efficiency. Our data demonstrate that mercury porosimetry is a reliable technique to obtain all the characteristic parameters of the flow-through pores of silica monoliths. An important result of our examination was that the surface-to-volume ratio of monolithic silica skeletons had more significant impact to the separation process, rather than the average flow-through pore sizes. We could also show the essential differences between the particulate and monolithic stationary phases based on theoretical computation. The results, obtained from other characterization methods also indicated the structural complexity of monolithic silica samples. Permeability of columns is a generally applicable parameter to characterize all chromatographic phases no matter the chemistry or format. The correlation coefficient obtained for mercury intrusion and permeability of water was 0.998, though our investigation revealed that the surface modification is more likely influencing the obtained results. Further, the assumption of the cylindrical morphology of flow-through pores is not relevant to the investigated monolithic silica columns. These results on the morphology of the flow-through pores and of the skeletons were confirmed by the image analysis as well. Our main finding is that the flow-through pore sizes are not relevant for the estimation of the chromatographic separation efficiency of monolithic silica columns.  相似文献   

8.
Utilizing the concurrence of polymerization-induced phase separation and sol-gel transition in the hydrolytic polycondensation of alkoxysilanes, a well-defined macroporous structure is formed in a monolithic wet gel. By exchanging the fluid phase of the wet gel with an appropriate external solution, the nanometer-range structure of the wet gel can be reorganized into structures with larger median pore size essentially without affecting the macroporous framework. The double-pore structure thus prepared is characterized by open pores distributed in discrete size ranges of micrometers and nanometers. A new type of chromatographic column (silica rod) has been developed using monolithic double-pore silica instead of packed spherical gel particles. Typical silica rod columns had significantly reduced pressure drops and improved analytical efficiencies which do not deteriorate even at higher sample flow rates, both arising from a greater macropore volume than particle packed columns.  相似文献   

9.
MCM-48 membranes have been prepared on alumina supports of different pore sizes. A battery of characterization techniques has been used to study the physical properties and the quality of the membranes prepared. The highest quality membranes were prepared on supports with pore size of up to 60 nm. The MCM-48 membranes were tested in the separation of gas phase mixtures and a cyclohexane/O2 selectivity higher than 270 was obtained. The selective separation of organic compounds from inert components is a result of the cooperative effects of capillary condensation in MCM-48 pores and of the specific interactions of the permeating compounds and the membrane material.  相似文献   

10.
Wu R  Zou H  Fu H  Jin W  Ye M 《Electrophoresis》2002,23(9):1239-1245
The mixed mode of reversed phase (RP) and strong cation-exchange (SCX) capillary electrochromatography (CEC) based on a monolithic capillary column has been developed. The capillary monolithic column was prepared by in situ copolymerization of 2-(sulfooxy)ethyl methacrylate (SEMA) and ethylene dimethacrylate (EDMA) in the presence of porogens. The sulfate group provided by the monomer SEMA on the monolithic bed is used for the generation of the electroosmotic flow (EOF) from the anode to the cathode, but at the same time serves as a SCX stationary phase. A mixed-mode (RP/SCX) mechanism for separation of peptides was observed in the monolithic column, comprising hydrophobic and electrostatic interaction as well as electrophoretic migration at a low pH value of mobile phase. A column efficiency of more than 280,000 plates/m for the unretained compound has been obtained on the prepared monoliths. The relative standard deviations observed for t(0) and retention factors of peptides were about 0.32% and less than 0.71% for ten consecutive runs, respectively. Effects of mobile phase compositions on the EOF of the monolithic column and on the separation of peptides were investigated. The selectivity on separation of peptides in the monolithic capillary column could be easily manipulated by varying the mobile phase composition.  相似文献   

11.
采用无搅动原位聚合模式,在聚醚醚酮柱管中直接制备了聚合物整体固定相。通过扫描电镜观察到该整体固定相的孔径分布呈双峰模式,且孔结构均匀。用压汞法测定了该固定相的孔径分布、孔隙率及比表面积等参数,考察了致孔剂组成、聚合温度及交联剂含量等参数对固定相孔结构的影响,并对制备条件进行了优化。测定了流速与柱前压的关系,实验表明此整体固定相具有良好的通透性。通过对山羊血清和低聚核苷酸的分离分析,证明了所制备的整体固定相适合用于生物大分子的分离纯化。  相似文献   

12.
杂化硅胶整体材料研磨法制备混合型高效液相色谱固定相   总被引:1,自引:0,他引:1  
王照地  张璐  郭丙倩  王世革  黄明贤 《色谱》2019,37(5):484-490
以聚乙二醇(PEG)为致孔剂,四甲氧基硅烷(TMOS)和乙烯基三甲氧基硅烷(VTMS)为杂化硅胶前驱体,在乙酸催化作用下使硅烷发生水解,在尿素加热分解提供的碱性环境下水解的硅烷进一步缩聚得到杂化硅胶整体材料。将此整体材料用球磨机研磨,然后用三羟甲基氨基甲烷处理,并洗涤干燥得到粒径为3 μm左右的硅胶颗粒。探索了不同反应条件对硅胶颗粒的大小、比表面积和孔径、表面形貌和分散性的影响;当TMOS和VTMS体积比为3:1时可以得到孔径为7.5 nm和比表面积为245 m2/g的硅胶颗粒。通过对所制得的硅胶颗粒表面进行C18(十八烷基二甲基氯硅烷)键合修饰和巯基-烯点击反应,得到混合型高效液相色谱固定相。对此固定相的测试结果表明以上硅胶色谱填料的制备方法具有一定的实用性。  相似文献   

13.
Dong X  Wu R  Dong J  Wu M  Zhu Y  Zou H 《Electrophoresis》2008,29(4):919-927
A hydrophilic chiral capillary monolithic column for enantiomer separation in CEC was prepared by coating cellulose tris(3,5-dimethylphenyl-carbamate) (CDMPC) on porous hydrophilic poly(acrylamide-co-N,N'-methylene-bisacrylamide) (poly(AA-co-MBA)) monolithic matrix with confine of a fused-silica capillary. The coating conditions were optimized to obtain a stable and reproducible chiral stationary phase for CEC. The effect of organic modifier of ACN in aqueous mobile phase for the enantiomer separation by CEC was investigated, and the significant influence of ACN on the enantioresolution and electrochromatographic retention was observed. Twelve pairs of enantiomers including acidic, neutral, and basic analytes were tested and nine pairs of them were baseline-enantioresolved with acidic and basic aqueous mobile phases. A good within-column repeatability in retention time (RSD = 2.4%) and resolution (RSD = 3.2%) was obtained by consecutive injections of a neutral compound, benzoin, on a prepared chiral monolithic column, while the between-column repeatability in retention time (RSD = 6.4%) and resolution (RSD = 9.6%) was observed by column-to-column examination. The prepared monolithic stationary phase showed good stability in either acidic or basic mobile phase.  相似文献   

14.
Reduction of through-pore size and skeleton size of a monolithic silica column was attempted to provide high separation efficiency in a short time. Monolithic silica columns were prepared to have various sizes of skeletons (approximately 1-2 microm) and through-pores (approximately 2-8 microm) in a fused-silica capillary (50-200 microm I.D.). The columns were evaluated in HPLC after derivatization to C18 phase. It was possible to prepare monolithic silica structures in capillaries of up to 200 microm I.D. from a mixture of tetramethoxysilane and methyltrimethoxysilane. As expected, a monolithic silica column with smaller domain size showed higher column efficiency and higher pressure drop. High external porosity (> 80%) and large through-pores resulted in high permeability (K = 8 x 10(-14) -1.3 x 10(-12) m2) that was 2-30 times higher than that of a column packed with 5-mirom silica particles. The monolithic silica columns prepared in capillaries produced a plate height of about 8-12 microm with an 80% aqueous acetonitrile mobile phase at a linear velocity of 1 mm/s. Separation impedance, E, was found to be as low as 100 under optimum conditions, a value about an order of magnitude lower than reported for conventional columns packed with 5-microm particles. Although a column with smaller domain size generally resulted in higher separation impedance and the lower total performance, the monolithic silica columns showed performance beyond the limit of conventional particle-packed columns under pressure-driven conditions.  相似文献   

15.
Fu-Ken Liu 《Chromatographia》2007,66(9-10):791-796
In this paper we report the use of size-exclusion chromatography (SEC) for rapid determination of the sizes and size distributions of Au nanoparticles (NPs) prepared by seed-assisted synthesis. Analytical separation of Au NPs was performed in a polymer-based column of pore size 400 nm. We characterized the sizes and size distributions of the Au NPs by using 10 mM sodium dodecyl sulfate (SDS) as mobile phase and obtained a linear relationship (R 2 = 0.986) between retention time and size of Au NPs within the range 9.8–79.1 nm; the relative standard deviations of these retention times were less than 0.3%. These separation conditions were used to characterize the sizes and size distributions of Au NPs prepared by seed-assisted synthesis. In addition to observing the elution times of the Au NPs we also simultaneously characterized their size-dependent optical properties by spectral measurement of the eluting peaks by use of an on-line diode-array detector (DAD), i.e., monitoring of the stability of the Au NP products. By using this approach we found the presence of SDS was beneficial in stabilizing the synthesized Au NPs. We also found that the volume of Au metal ions used affected the sizes of the final products. SEC seems an efficient tool for characterizing the sizes of NPs fabricated by seed-assisted synthesis.  相似文献   

16.
以苯基三乙氧基硅烷(PTES)和1,4-双三乙氧基硅基苯(BTEB)为反应单体,分别采用盐酸和十二胺为催化剂,通过两步酸碱催化的溶胶-凝胶法制备了新型双苯基杂化硅胶毛细管电色谱整体柱。分别采用扫描电镜、红外光谱和压汞法对材料的结构特性进行了表征。结果表明,所制备的材料具有特定的网络结构特征,孔径主要分布在3.4μm左右,材料的总孔容为3.5 cm3/g,比表面积为145 m2/g。新型整体柱能够很好地分离烷基取代苯、稠环芳烃、取代苯胺和硝基苯酚异构体。整体柱重复性实验表明,6种苯的同系物保留时间和容量因子的相对标准偏差分别小于0.61%和0.30%(n=8)。不同批次的整体柱的保留时间和容量因子的相对标准偏差分别小于7.2%和5.6%(n=3)。  相似文献   

17.
The selectivity window of size-based separations of macromolecules was tailored by tuning the macropore size of polymer monolithic columns. Monolithic materials with pore sizes ranging between 75 nm and 1.2 μm were prepared in situ in large I.D. columns. The dominant separation mechanism was hydrodynamic chromatography in the flow-through pores. The calibration curves for synthetic polymers matched with the elution behavior by HDC separations in packed columns with 'analyte-to-pore' aspect ratios (λ) up to 0.2. For large-macropore monoliths, a deviation in retention behavior was observed for small polystyrene polymers (M(r)<20 kDa), which may be explained by a combined HDC-SEC mechanism for λ<0.02. The availability of monoliths with very narrow pore sizes allowed investigation of separations at high λ values. For high-molecular weight polymers (M(r)>300,000 Da) confined in narrow channels, the separation strongly depended on flow rate. Flow-rate dependent elution behavior was evaluated by calculation of Deborah numbers and confirmed to be outside the scope of classic shear deformation or slalom chromatography. Shear-induced forces acting on the periphery of coiled polymers in solution may be responsible for flow-rate dependent elution.  相似文献   

18.
A separation system for gold nanoparticles was developed using monolithic silica capillary columns with 50 μm i.d., which were prepared via in-situ sol-gel processes. Gold nanoparticles with five different average sizes were synthesized via reduction of tetrachloroauric acid (HAuCl(4)) under different synthesis conditions, and were evaluated by UV-visible spectrophotometry, dynamic light scattering as well as transmission electron microscopy before they were separated using the developed system. The results showed that all of the gold nanoparticles had a certain size distribution, and the mean sizes obtained were 13, 17, 33, 43 and 61 nm, with σ = 2.5, 2.7, 5.2, 5.1 and 5.6 nm, respectively. Transmission electron microscopy showed that the samples with mean sizes of 13 and 17 nm were almost spherical, while larger samples were slightly non-uniform. The agglomeration of gold nanoparticles as the sample could be prevented by using a sodium dodecyl sulfate aqueous solution as the mobile phase, and gold nanoparticles were retained by adsorption on the silica surface. Separation with 8 mM sodium dodecyl sulfate as the eluent and a 1000-mm column was successful, and the separation of gold nanoparticles with 61 and 17 nm or 61 and 13 nm was demonstrated. The separation results obtained using a nonporous silica packed column as well as monolithic silica columns with or without mesopore growth were compared. It was found that separation using the mesopore-less monolithic column achieved better resolution. Through the use of a 2000-mm separation column, the mixtures of 61, 43, 17 nm and 61, 33, 13 nm could be separated.  相似文献   

19.
Monolithic silica capillary columns were successfully prepared in a fused silica capillary of 530 microm inner diameter and evaluated in HPLC after octadecylsilylation (ODS). Their efficiency and permeability were compared with those of columns pakked with 5-microm and 3-microm ODS-silica particles. The monolithic silica columns having different domain sizes (combined size of through-pore and skeleton) showed 2.5-4.0-times higher permeability (K= 5.2-8.4 x 10(-14) m2) than capillary columns packed with 3-mm particles, while giving similar column efficiency. The monolithic silica capillary columns gave a plate height of about 11-13 microm, or 11 200-13 400 theoretical plates/150 mm column length, in 80% methanol at a linear mobile phase velocity of 1.0 mm/s. The monolithic column having a smaller domain size showed higher column efficiency and higher pressure drop, although the monolithic column with a larger domain size showed better overall column performance, or smaller separation impedance (E value). The larger-diameter (530 microm id) monolithic silica capillary column afforded a good peak shape in gradient elution of proteins at a flow rate of up to 100 microL/min and an injection volume of up to 10 microL.  相似文献   

20.
The separation and determination of tocopherols (Ts) in vegetable oils by CEC using methacrylate ester-based monolithic columns has been developed. The effects of pore size of the monolithic columns were studied, and the composition of mobile phase was optimized. The optimal pore size of the monolith was obtained with 12 wt% 1,4-butanediol in the polymerization mixture. Excellent resolution between tocopherols was achieved within 10 min analysis time with a 99:1 v/v MeOH-aqueous buffer containing 5 mM tris(hydroxymethyl)aminomethane at pH 8.0. The LODs were lower than 2.3 microg/mL, and interday and column-to-column reproducibilities at 25 microg/mL were better than 5.6%. Using a 93:7 v/v MeOH-aqueous buffer, both tocopherols and tocotrienols (T(3)s) of grapeseed and palm oils were resolved. Application to the detection of olive oil adulteration with low-cost edible oils was demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号