首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LDA measurements of the mean velocity in a low Reynolds number turbulent boundary layer allow a direct estimate of the friction velocity U from the value of /y at the wall. The trend of the Reynolds number dependence of / is similar to the direct numerical simulations of Spalart (1988).  相似文献   

2.
A new procedure for the reduction of Preston tube data is introduced, based on the van Driest transformation. It appears to give results agreeing with the better calibration experiments, although a significant assumption in its derivation is violated.List of Symbols M s Mach number sensed by Preston tube - M Friction Mach number (=u/wall sound speed) - R Gas constant - T w Wall temperature - d Diameter of Preston tube - h Height of effective centre of Preston tube - p Preston tube pressure difference reading - p i Equivalent incompressible Preston tube reading - p w Wall pressure - r Recovery factor (=0.896) - u Friction velocity (=[w/wall density]1/2) - Empirical constant allowing for departure from Crocco temperature-velocity correlation (=0.975) - Specific heat ratio - Fluid kinematic viscosity - w Wall shear-stress  相似文献   

3.
Viscoelastic properties were examined for semidilute solutions of poly(methyl methacrylate) (PMMA) and polystyrene (PS) in chlorinated biphenyl. The number of entanglement per molecule, N, was evaluated from the plateau modulus, G N . Two time constants, s and 1, respectively, characterizing the glass-to-rubber transition and terminal flow regions, were evaluated from the complex modulus and the relaxation modulus. A time constant k supposedly characterizing the shrink of an extended chain, was evaluated from the relaxation modulus at finite strains. The ratios 1/ s and k / s were determined solely by N for each polymer species. The ratio 1/ s was proportional to N 4.5 and N 3.5 for PMMA and PS solutions, respectively. The ratio k / s was approximately proportional to N 2.0 in accord with the prediction of the tube model theory, for either of the polymers. However, the values for PMMA were about four times as large as those for PS. The result is contrary to the expectation from the tube model theory that the viscoelasticity of a polymeric system, with given molecular weight and concentration, is determined if two material constants s and G N are known.  相似文献   

4.
The mean and turbulent characteristics of an incompressible turbulent boundary layer developing on a convex surface under the influence of an adverse pressure gradient are presented in this paper.The turbulence quantities measured include all the components of Reynolds stresses, auto-correlation functions and power spectra of the three components of turbulence. The results indicate the comparative influence of the convex curvature and adverse pressure gradient which are simultaneously acting on the flow. The investigation provides extensive experimental information which is much needed for a better understanding of turbulent shear flows.Nomenclature a, b constants in equation for velocity defect profile (Fig. 6) - c f skin-friction coefficient (= w/F 1/2 U 1 2 ) - E(k 1) one-dimensional wave number spectra - f frequency in Hz - G Clauser's equilibrium parameter = (H–1)/H(c f /2) - H shape parameter (= 1/ 2) - k 1 wave number (=2f/U) - L u, L v, L w length scales of u, v and w fluctuations - p s static pressure on the measurement surface - p w reference tunnel wall static pressure - q 2 total turbulent kinetic energy - R radius of curvature of the convex surface - R() auto-correlation function - T u, T v, T w time scales of u, v and w fluctuations - U local mean velocity - U 1 local free stream velocity - U * friction velocity - u, v, w velocity fluctuations in x, y and z directions respectively - X streamwise coordinate measured along the surface from A (Fig. 1b) - x streamwise coordinate measured along the surface reckoned from station 9 - y coordinate normal to the surface - z spanwise coordinate - 1/ w · dp/dx - - boundary layer thickness - 1 displacement thickness - 2 momentum thickness - 3 energy thickness - kinematic viscosity - density - time delay - w wall shear stress  相似文献   

5.
An interesting property of the flows of a binary mixture of neutral gases for which the molecular mass ratio =m/M1 is that within the limits of the applicability of continuum mechanics the components of the mixture may have different temperatures. The process of establishing the Maxwellian equilibrium state in such a mixture divides into several stages, which are characterized by relaxation times i which differ in order of magnitude. First the state of the light component reaches equilibrium, then the heavy component, after which equilibrium between the components is established [1]. In the simplest case the relaxation times differ from one another by a factor of *.Here the mixture component temperature difference relaxation time T /, where is the relaxation time for the light component. If 1, 1, so that T ~1, then for the characteristic hydrodynamic time scale t~1 the relative temperature difference will be of order unity. In the absence of strong external force fields the component velocity difference is negligibly small, since its relaxation time vt1.In the case of a fully ionized plasma the Chapman-Enskog method is quite easily extended to the case of the two-temperature mixture [3], since the Landau collision integral is used, which decomposes directly with respect to . In the Boltzmann cross collision integral, the quantity appears in the formulas relating the velocities before and after collision, which hinders the decomposition of this integral with respect to , which is necessary for calculating the relaxation terms in the equations for temperatures differing from zero in the Euler approximation [4] (the transport coefficients are calculated considerably more simply, since for their determination it is sufficient to account for only the first (Lorentzian [5]) terms of the decomposition of the cross collision integrals with respect to ). This led to the use in [4] for obtaining the equations of the considered continuum mixture of a specially constructed model kinetic equation (of the Bhatnagar-Krook type) which has an undetermined degree of accuracy.In the following we use the Boltzmann equations to obtain the equations of motion of a two-temperature binary gas mixture in an approximation analogous to that of Navier-Stokes (for convenience we shall term this approximation the Navier-Stokes approximation) to determine the transport coefficients and the relaxation terms of the equations for the temperatures. The equations in the Burnett approximation, and so on, may be obtained similarly, although this derivation is not useful in practice.  相似文献   

6.
Zusammenfassung Der Wärmeübergang bei turbulenter Film kondensation strömenden Dampfes an einer waagerechten ebenen Platte wurde mit Hilfe der Analogie zwischen Impuls-und Wärmeaustausch untersucht. Zur Beschreibung des Impulsaustausches im Film wurde ein Vierbereichmodell vorgestellt. Nach diesem Modell wird die wellige Phasengrenze als starre rauhe Wand angesehen. Die Abhängigkeit einer Schubspannungs-Nusseltzahl von der Film-Reynoldszahl und Prandtlzahl wurde berechnet und dargestellt.
A model for turbulent film condensation of flowing vapour
The heat transfer in turbulent film condensation of flowing vapour on a horizontal flat plate was investigated by means of the analogy between momentum and heat transfer. To describe the momentum transfer in the film a four-region model was presented. With this model the wavy interfacial surface is treated as a stiff rough wall. A shear Nusselt number has been calculated and represented as a function of film Reynolds number and Prandtl number.

Formelzeichen a Temperaturleitkoeffizient - k Mischungswegkonstante - k s äquivalente Sandkornrauhigkeit - Nu x lokale Schubspannungs-Nusseltzahl,Nu x=xxv/uw - Pr Prandtlzahl,Pr=v/a - Pr t turbulente Prandtlzahl,Pr t =m/q - q Wärmestromdichte q - R Wärmeübergangswiderstand - Rf Wärmeübergangswiderstand des Films - Re F Reynoldszahl der Filmströmung - T Temperatur - U, V Geschwindigkeitskomponenten des Dampfes in waagerechter und senkrechter Richtung - u, Geschwindigkeitskomponenten des Kondensats in waagerechter und senkrechter Richtung - V Querschwankungsgeschwindigkeit des Kondensats und des Dampfes - u /gtD Schubspannungsgeschwindigkeit an der Phasengrenze für die Dampfgrenzschicht, uD =(/)1/2 - u F Schubspannungsgeschwindigkeit an der Phasengrenze für den Kondensatfilm,u F =(/)1/2 - u w Schubspannungsgeschwindigkeit an der Wand der Kühlplatte,u w =(w/)1/2 - y Wandabstand - x Wärmeübergangskoeffizient - gemittelte Kondensatfilmdicke - s Dicke der zähen Schicht der Filmströmung an der welligen Phasengrenze - 4 Dicke der zähen Schicht der Filmströmung an der gemittelten glatten Phasengrenze - Wärmeleitzahl - dynamische Viskosität - v kinematische Viskosität - Dichte - Oberflächenspannung - w Wandschubspannung - Schubspannung an der Phasengrenzfläche - m turbulente Impulsaustauschgröße - q turbulente Wärmeaustauschgröße Indizes d Wert des Dampfes - w Wert an der Wand - x lokaler Wert inx - Wert an der Phasengrenze Stoffgrößen ohne Index gelten für das Kondensat  相似文献   

7.
Die swell of filled polymer melts   总被引:1,自引:0,他引:1  
The Barus effect in polypropylene and polystyrene blended with a variety of fillers at various concentrations was investigated using a capillary extrusion rheometer. If the die swell is defined as the square of the ratio of the extrudate diameterd to the die diameterD, it is found to depend on the apparent shear stress W . Below a certain value of w the relation =B B A applies. The die swell, M , of a filled polymer depends on the type, size and volume fraction of the filler. In particular,A increases as the volume fraction increases and is largest for powders, smaller for flakes and smallest for fibres, whereasB shows the opposite trend but to a lesser extent.  相似文献   

8.
Turbulent tube flow and the flow through a porous medium of aqueous hydroxypropylguar (HPG) solutions in concentrations from 100 wppm to 5000 wppm is investigated. Taking the rheological flow curves into account reveals that the effectiveness in turbulent tube flow and the efficiency for the flow through a porous medium both start at the same onset wall shear stress of 1.3 Pa. The similarity of the curves = ( w ) and = ( w ), respectively, leads to a simple linear relation / =k, where the constantk or proportionality depends uponc. This offers the possibility to deduce (for turbulent tube flow) from (for flow through a porous medium). In conjunction with rheological data, will reveal whether, and if yes to what extent, drag reduction will take place (even at high concentrations).The relation of our treatment to the model-based Deborah number concept is shown and a scale-up formula for the onset in turbulent tube flow is deduced as well.  相似文献   

9.
In this paper, the compactness of quasi-conforming element spaces and the—convergence of quasi-conforming element method are discussed. The well-known Rellich compactness theorem is generalized to the sequences of quasi-conforming element spaces with certain properties, and the generalized Poincare inequality. The generalized Friedrichs inequality and the generalized inequality of Poincare-Friedrichs are proved true for them. The error estimates are also given. It is shown that the quasi-conforming element method is convergent if the quasi-conforming element spaces have the approximability and the strong continuity, and satisfy the rank condition of element and pass the test IPT. As practical examples, 6-parameter, 9-paramenter, 12-paramenter, 15-parameter, 18-parameter and 21-paramenter quasi-conforming elements are shown to be convergent, and their L22()-errors are O(h), O(h), O(h 2 ), O(h 2 ), O(h ), and O(h 4 ) respectively.  相似文献   

10.
Correlations for corrections to hot-wire data for the effects of wall proximity within the viscous sublayer are usually presented in the form u/u = F (y u /). The application of such correlations requires a prior knowledge of the wall shear stress; alternatively, the correlation must be used in an iterative fashion. It is shown in the present note that any such correlation may be recast with no loss of generality in the explicit form u/u m = f (y u m/), which is more convenient for use.List of symbols u difference between measured and actual velocities, u mu - u m measured velocity - u shear velocity, - u + on-dimensional velocity, u/u - y distance from wall - y + non-dimensional distance from wall, y u / - fluid density - fluid kinematic viscosity - s wall shear stress  相似文献   

11.
Quantitative results concerning the modulation of the ejection and bursting frequency in an unsteady channel flow obtained by flow visualizations are presented and compared with probe measurements. The frequency of the imposed velocity oscillations f covers a large range going from the quasi steady limit to the time mean bursting frequency in the corresponding steady flow. The imposed amplitudes of the velocity oscillations are 13% and 20% of the centerline velocity. The bursting process is identified by the intermittent lift up of the dye injected at the wall. Qualitative analysis of the flow visualizations show that the ejection activity at a given phase of the oscillation cycle is repetitive from one cycle to the other. The modulation amplitude of the ejection frequency f e is sensitive to the imposed frequency. At low imposed frequency f e is modulated as the wall shear stress, but the inner scaling does not hold when f + is high. Here, (+) corresponds to the quantities normalized with the inner variables, i.e. the friction velocity u and the viscosity . The grouping of the ejections into bursts show the coexistence of two categories of events which react differently to the forcing. The groups of ejections (Multiple Ejection Bursts) are governed by the modulation of the wall shear stress in the whole imposed frequency range. The solitary ejections (or the Single Ejection Bursts) have modulation amplitudes and phases which differ significantly from those of in the intermediate and high imposed frequency range. There is a good agreement between the flow visualization data and the probe measurements.  相似文献   

12.
Transients in melt spinning of isothermal power law and Newtonian fluids were found to be governed by an extremely simple partial differential equation 2 ( 1/n )/() = 0 in Lagrangian coordinates where is the cross-sectional area,n the power law exponent, the time and the the time at which a fluid molecule constituting the spinline left the spinneret. The general integral 1/n =f() +g () of the above governing equation containing two arbitrary functions represents physically attainable spinline transients. Hitherto unknown analytical transient solutions of the above governing equation were obtained for the response of isothermal constant tension spinlines to a stepwise change in tension, spinneret hole area, extrusion speed or extrusion viscosity and for the starting transient in gravitational spinning. Linearized perturbation solutions and the stability limit of the spinline derived from the above new found nonlinear solutions were in agreement with previous findings and the above nonlinear response of the spinline to a step increase in the spinneret hole area was found to be equivalent to Orowan's tandem cylinder model of dent growth in filament stretching.  相似文献   

13.
The effects of finite measuring volume length on laser velocimetry measurements of turbulent boundary layers were studied. Four different effective measuring volume lengths, ranging in spanwise extent from 7 to 44 viscous units, were used in a low Reynolds number (Re=1440) turbulent boundary layer with high data density. Reynolds shear stress profiles in the near-wall region show that u v strongly depends on the measuring volume length; at a given y-position, u v decreases with increasing measuring volume length. This dependence was attributed to simultaneous validations on the U and V channels of Doppler bursts coming from different particles within the measuring volume. Moments of the streamwise velocity showed a slight dependence on measuring volume length, indicating that spatial averaging effects well known for hot-films and hot-wires can occur in laser velocimetry measurements when the data density is high.List of symbols time-averaged quantity - u wall friction velocity, ( w /)1/2 - v kinematic viscosity - d p pinhole diameter - l eff spanwise extent of LDV measuring volume viewed by photomultiplier - l + non-dimensional length of measuring volume, l eff u /v - y + non-dimensional coordinate in spanwise direction, y u /v - z + non-dimensional coordinate in spanwise direction, z u /v - U + non-dimensional mean velocity, /u - u instantaneous streamwise velocity fluctuation, U &#x2329;U - v instantaneous normal velocity fluctuation, V–V - u RMS streamwise velocity fluctuation, u 21/2 - v RMS normal velocity fluctuation, v 21/2 - Re Reynolds number based on momentum thickness, U 0/v - R uv cross-correlation coefficient, u v/u v - R12(0, 0, z) two point correlation between u and v with z-separation, <u(0, 0, 0) v (0, 0, z)>/<u(0, 0, 0) v (0, 0, 0)> - N rate at which bursts are validated by counter processor - T Taylor time microscale, u (dv/dt2)–1/2  相似文献   

14.
The paper reports the outcome of a numerical study of fully developed flow through a plane channel composed of ribleted surfaces adopting a two-equation turbulence model to describe turbulent mixing. Three families of riblets have been examined: idealized blade-type, V-groove and a novel U-form that, according to computations, achieves a superior performance to that of the commercial V-groove configuration. The maximum drag reduction attained for any particular geometry is broadly in accord with experiment though this optimum occurs for considerably larger riblet heights than measurements indicate. Further explorations bring out a substantial sensitivity in the level of drag reduction to the channel Reynolds number below values of 15 000 as well as to the thickness of the blade riblet. The latter is in accord with the trends of very recent, independent experimental studies.Possible shortcomings in the model of turbulence are discussed particularly with reference to the absence of any turbulence-driven secondary motions when an isotropic turbulent viscosity is adopted. For illustration, results are obtained for the case where a stress transport turbulence model is adopted above the riblet crests, an elaboration that leads to the formation of a plausible secondary motion sweeping high momentum fluid towards the wall close to the riblet and thereby raising momentum transport.Nomenclature c f Skin friction coefficient - c f Skin friction coefficient in smooth channel at the same Reynolds number - k Turbulent kinetic energy - K + k/ w - h Riblet height - S Riblet width - H Half height of channel - Re Reynolds number = volume flow/unit width/ - Modified turbulent Reynolds number - R t turbulent Reynolds numberk 2/ - P k Shear production rate ofk, t (U i /x j + U j /x i ) U i /x j - dP/dz Streamwise static pressure gradient - U i Mean velocity vector (tensor notation) - U Friction velocity, w/ where w=–H dP/dz - W Mean velocity - W b Bulk mean velocity through channel - y + yU /v. Unless otherwise stated, origin is at wall on trough plane of symmetry - Kinematic viscosity - t Turbulent kinematic viscosity - Turbulence energy dissipation rate - Modified dissipation rate – 2(k 1/2/x j )2 - Density - k , Effective turbulent Prandtl numbers for diffusion ofk and   相似文献   

15.
Simultaneous measurements of stress relaxation and differential dynamic modulus were made at 268 K over a time scale of 10 to 1045 s for nearly monodisperse polybutadiene (M w =2.2x105, 1,2-structure 70%, M e =3600) and also one having coarse cross-linking (M c =29000). Static shear strain ranged from 0.1 to 2.0. In a long-time region (t> k ), the relaxation modulus G (; t) could be expressed by the product G (0; t) h (y). The observed h() agreed well with the Doi-Edwards theory without use of IA approximation. Both the cured and uncured samples showed initial drop of the differential storage modulus G (), ; t) followed by gradual recovery, but did not attain the value before shearing G (, ; t) for the uncured sample showed smaller values than that for the cured one in the whole measured time scale at the higher strain, confirming the two origins of nonlinear viscoelasticity of well entangled polymer; induced chain anisotropy and induced decrement in entanglement density. G (, ; t) curves for the cured sample agreed well with the BKZ predictions. But the curves for the uncured sample agreed well with the BKZ prediction only at the time scale of t< k . BKZ prediction showed significant upward deviations at t> k . Such the differences are discussed in terms of the two origins.Dedicated to Prof. John D. Ferry on the occasion of his 85th birthday.  相似文献   

16.
The seepage velocity arising from pressure and buoyancy driving forces in a slender vertical layer of fluid-saturated porous media is considered. Quadratic drag (Forcheimer effects) and Brinkman viscous forces are included in the analysis. Parameters are identified which characterize the influence of matrix permeability, quadratic drag and buoyancy. An explicit solution is obtained for pressure-driven flow which illustrates the influence of quadratic drag and the strong boundary layer behavior expected for low permeability media. The experimental data of Givler and Altobelli [2] for water seepage through a high porosity foam is found to yield good agreement with the present analysis. For the case of buoyancy-driven flow, a uniformly valid approximate solution is found for low permeability media. Comparison with the pressure-driven case shows strong similarities in the near-wall region.Nomenclature B function of - d layer thickness - D discriminant defined by Equation (9) - modified Darcy number - F Forcheimer constant - g gravitational acceleration - k porous matrix permeability - m parameter defined by Equation (11) - p pressure - p modified pressure - pressure gradient - R buoyancy parameter - T 0 nominal layer temperature - u seepage velocity - dimensionless seepage velocity - c composite approximation - i boundary layer velocity - o outer or core flow approximation - m midplane velocity - U matching velocity - V cross-sectional average velocity - w variable defined by Equation (12) - x, z Cartesian coordinates - , dimensionless Cartesian coordinates - inertia parameter - T layer temperature difference - larger root of cubic given by Equation (8) - fluid dynamic viscosity - e effective viscosity of fluid saturated medium - variable defined by Equation (18) - 0 fluid density - smaller root of cubic given by Equation (8) - variable defined by Equation (18) - stretched inner coordinate - porosity - function of   相似文献   

17.
O. Wein 《Rheologica Acta》1977,16(3):248-260
Zusammenfassung Die Rheodynamik der stationären viskometrischen Drehströmung um eine rotierende Kugel wird mit Methoden der Variationsrechnung untersucht. Neben iterativen numerischen Lösungsmethoden, die zu exakten Resultaten führen, wird auch eine approximative Ein-Gradienten-Lösung konstruiert, die durch Quadraturen dargestellt wird. Ausgehend von dieser analytischen Approximation werden einfache Methoden zur Auswertung von Experimentaldaten vorgeschlagen, die mit Hilfe von Eintauch-Rotationsviskosimetern mit kugelförmigen Meßspindeln gewonnen wurden.
Summary The rotational viscometric flow around a rotating sphere has been studied by variational methods. The exact numerical, as well as an approximate analytical solutions are given. Employing the analytical approximation, a simple method of evaluating viscometric data from immersional (portable) viscometers with a rotating sphere is proposed.

A Achsenschnitt durch den Bereich der Strömung - B - b, c anpaßbare empirische Konstanten - C Kalibrierungsoperator - D Schergeschwindigkeit der viskosimetrischen Strömung - D ij Komponenten des Deformationsgeschwindigkeitstensors - D I, I Stoffkonstanten der VF des Ellis-Modells - g metrischer Koeffizient - H() Funktional der Ein-Gradienten-Approximation, Gl. [27] - J[] energetisches Potential - J a[] Ein-Gradienten-Approximation fürJ - K Konsistenzkoeffizient, Parameter der VF des Potenzmodells - m Parameter des Ellis-Modells - M Drehmoment - n Parameter des Potenzmodells - n, n Differentialindices der VF, Gl. [20c, d] - n*,n** Differentialindices der RC, Gl. [9], [13] - r, , z polare Zylinderkoordinaten - R Spindelhalbmesser - rheometrischer Operator - S Spindeloberfläche - U(D) energetische Funktion nachBird, Gl. [20e] - v i physikalische Komponenten der Geschwindigkeit - Z() transformierte VF, Gl. [20f] - (n) durch Gl. [35] definierte Funktion - k Verhältnis der Radien von Spindel und Wand - ( durch Gl. [43] definierte Funktion - natürliche (Radial-)Koordinate - Schubspannung der viskosimetrischen Strömung - ij Komponenten des Spannungstensors - S() Spannungsprofil an der Spindeloberfläche - M Maximalspannung an der Spindeloberfläche - mittlere Spannung an der Spindeloberfläche, Gln. [3], [22] - natürliche (Meridional-) Koordinate - Winkelgeschwindigkeit in der Flüssigkeit - Winkelgeschwindigkeit der Spindelrotation - ( rheometrische Charakteristik Mit 4 Abbildungen und 3 Tabellen  相似文献   

18.
An analytical solution is presented for the calculation of the flow field in a concentric cylinder viscometer of non-ideal Bingham-fluids, described by the Worrall-Tuliani rheological model. The obtained shear rate distribution is a function of the a priori unknown rheological parameters. It is shown that by applying an iterative procedure experimental data can be processed in order to obtain the proper shear rate correction and the four rheological parameters of the Worrall-Tuliani model as well as the yield surface radius. A comparison with Krieger's correction method is made. Rheometrical data for dense cohesive sediment suspensions have been reviewed in the light of this new method. For these suspensions velocity profiles over the gap are computed and the shear layer thicknesses were found to be comparable to visual observations. It can be concluded that at low rotation speeds the actually sheared layer is too narrow to fullfill the gap width requirement for granular suspensions and slip appears to be unavoidable, even when the material is sheared within itself. The only way to obtain meaningfull measurements in a concentric cylinder viscometer at low shear rates seems to be by increasing the radii of the viscometer. Some dimensioning criteria are presented.Notation A, B Integration constants - C Dimensionless rotation speed = µ/y - c = 2µ - d = 0 2–2cy - f() = (–0)2+2c(–y) - r Radius - r b Bob radius - r c Cup radius - r y Yield radius - r 0 Stationary surface radius - r Rotating Stationary radius - Y 0 Shear rate parameter = /µ Greek letters Shear rate - = (r y /r b )2– 1 - µ Bingham viscosity - µ0 Initial differential viscosity - µ µ0 - Rotation speed - Angular velocity - Shear stress - b Bob shear stress - B Bingham stress - y (True) yield stress - 0 Stress parameter = B Y 0 - B - y   相似文献   

19.
Zusammenfassung Die Wandgleitgeschwindigkeit von dispers-plastischen Gemischen aus Kaolinpulver und Paraffinöl wird nach der Drei-Spalte-Methode für die Couette-Strömung mit einem Searle-Rheometer ermittelt. Sie steigt zunächst mit zunehmender Schubspannung an, erreicht ein Maximum, fällt mit weiter steigender Schubspannung wieder ab und wird schließlich sogar negativ. Eine negative Wandgleitgeschwindigkeit ist natürlich physikalisch unmöglich. Dispersplastische Gemische aus Kaolinpulver und Paraffinöl zeigen also ein komplizierteres Wandverhalten als reines Wandgleiten.Zur Deutung dieses komplizierten Wandeffektes wird eine Modellvorstellung entwickelt. Wichtig ist hierbei, daß eine zunehmende Wandgleitgeschwindigkeit auftritt, bevor eine starke Scherströmung im Innern des Strömungsfeldes einsetzt. Mit beginnender Scherströmung führen die plättchenförmigen dispersen Teilchen auf Grund von Zusammenstößen seitliche Schwankungsbewegungen um die makroskopisch wahrnehmbaren Bahnkurven aus.Diese Teilchenbewegungen führen zur Zerstörung der zunächst beim Wandgleiten sich ausbildenden Mikrostrukturen an der Wand. Daher kann die Wandgleitgeschwindigkeit trotz steigender Wandschubspannung abnehmen. Die Behinderung der seitlichen Partikelbewegungen an der Wand — die dispersen Teilchen können sich auf der Wand abstützen — führt bei weiter steigender Schergeschwindigkeit im Innern des Strömungsfeldes makroskopisch zu einer Versteifung des Materials in Wandnähe. Damit können negative Werte der sog. Wandgleitgeschwindigkeit — man spricht besser von einer integralen Wandfunktion — sowie bestimmte experimentelle Befunde bei der Druckabhängigkeit und bei der Temperaturabhängigkeit der rheologischen Eigenschaften und des Wandeffektes erklärt werden.Die experimentellen Untersuchungen beschränken sich im wesentlichen auf den Wandeffekt an schwach gekrümmten Wänden in Couette-Spalten, an denen ein Krümmungseinfluß auf den Wandeffekt mit großer Wahrscheinlichkeit vernachlässigbar ist. Die Auswirkung eines Krümmungseinflusses auf die rheometrischen Meßergebnisse wird jedoch diskutiert. Die aus rheometrischen Messungen bestimmbare integrale Wandfunktion liefert im Fall des komplizierten Wandeffektes noch keine vollständige Information über das Wandverhalten.
The wall slip velocity of disperse plastic mixtures of kaolin powder and paraffin oil is determined by the so-called three-gap method for Couette flow with a Searle rheometer. At the start it grows with increasing shear stress, reaches a maximum, then decreases with further increases in shear stress and finally becomes negative. From a physical point of view, negative wall-slip-velocities are impossible. Thus it is concluded that disperse plastic mixtures of kaolin powder and paraffin oil show a more complicated wall effect than pure wall slip.In order to explain this complicated wall effect a model of the microstructure near the wall is developed: It is essential that increasing wall slip velocity occurs before the start of shear flow in the interior of the flow field. With shear flow the slab-like disperse particles perform lateral fluctuations around their macroscopically perceptible flow paths. These are caused by collisions between the particles. These lateral particle movements destroy the microstructure at the wall which was built up by pure wall slip. Therefore the wall slip velocity may decrease inspite of increasing wall shear stress. One may then assume a suppression of lateral particle movement at the wall with further increases in the shear in the interior of the flow field which will cause some kind of stiffening of the material near the wall. This assumption can explain the negative values of the so-called slip velocity (which is better termed an integral wall function) as well as some effects in connection with the pressure and temperature dependence of the flow function and integral wall function.The experimental investigations are confined to slowly curved walls in Couette gaps, where an influence of wall curvature on the wall effect may be neglected, but the influence of wall curvature on the wall effect is discussed theoretically. The integral wall function which can be determined from rheometric measurements does not yield complete information on the complicated wall effect.

f() Schubspannungsfunktion - Schubspannungsfunktion in Wandnähe - h axiale Erstreckung eines Couette-Spaltes - M d übertragenes Drehmoment in der Couette-Strömung - R kleinster Krümmungsradius einer Wand an einer Stelle - R w Radius einer zylindrischen Wand - R a, Ri Radien von Außen- und Innenzylinder eines Couette-Spaltes - R 1, R2, R3 Radien eines Drei-Spalte-Couette-Systems - R w1, Rw2 Radien von zwei Rohren - Volumenstrom in einer Rohrströmung - Volumenströme durch zwei verschiedene Rohre bei gleicher Wandschubspannung - v w (w) Wandgleitgeschwindigkeit - Winkel zwischen Wandschubspannung und der Richtung, in der die Wand am schwächsten gekrümmt ist - =(Ra/Ri)2 quadratisches Radienverhältnis - (w) Dicke der vom komplizierteren Wandeffekt beeinflußten Wandschicht - Dicke eines Gleitfilms bei Wandgleiten - w Schubspannungsänderung in der Wandschicht (w) - f(w, ) Wandfunktion - Wandabstand - ø w (w) integrale Wandfunktion bei vernachlässigbarer Wandkrümmung und vernachlässigbarer Schubspannungsänderung in der Wandschicht (w) - ø Couette ( w, 2) integrale Wandfunktion der Couette-Strömung - ø Rohr ( w, Rw) integrale Wandfunktion der Rohrströmung - ø Couette * ( w, R2) experimentell ermittelte Wandfunktion der Couette-Strömung - ø Rohr * ( w, Rw, Rw2) experimentell ermittelte Wandfunktion der Rohrströmung - 1, 2 größter bzw. kleinster Krümmungsradius einer Wand - w Wandschubspannung - a, i Wandschubspannung am Außen- bzw. Innenzylinder eines Couette-Spaltes - 2 Wandschubspannung in einem Drei-Spalte-Couette-System am mittleren RadiusR 2 - Schubspannung - Winkelgeschwindigkeitsdifferenz zwischen Außen- und Innenzylinder eines Couette-Spaltes - I (Md), II (Md), III(Md) Winkelgeschwindigkeitsdifferenzen an einem Drei-Spalte-Couette-System als Funktionen des übertragenen Momentes  相似文献   

20.
Summary A new and very general expression is proposed for correlation of data for the effective viscosity of pseudoplastic and dilatant fluids as a function of the shear stress. Most of the models which have been proposed previously are shown to be special cases of this expression. A straightforward procedure is outlined for evaluation of the arbitrary constants.
Zusammenfassung Eine neue und sehr allgemeine Formel wird für die Korrelation der Werte der effektiven Viskosität von strukturviskosen und dilatanten Flüssigkeiten in Abhängigkeit von der Schubspannung vorgeschlagen. Die meisten schon früher vorgeschlagenen Methoden werden hier als Spezialfälle dieser Gleichung gezeigt. Ein einfaches Verfahren für die Auswertung der willkürlichen Konstanten wird beschrieben.

Nomenclature b arbitrary constant inSisko model (eq. [5]) - n arbitrary exponent in eq. [1] - x independent variable - y(x) dependent variable - y 0(x) limiting behavior of dependent variable asx 0 - y(x) limiting behavior of dependent variable asx - z original dependent variable - arbitrary constant inSisko model (eq. [5]) andBird-Sisko model (eq. [6]) - arbitrary exponent in eqs. [2] and [8] - effective viscosity = shear stress/rate of shear - A effective viscosity at = A - B empirical constant in eqs. [2] and [8] - 0 limiting value of effective viscosity as 0 - 0() limiting behavior of effective viscosity as 0 - limiting value of effective viscosity as - () limiting behavior of effective viscosity as - rate of shear - arbitrary constant inBird-Sisko model (eq.[6]) - shear stress - A arbitrary constant in eqs. [2] and [8] - 0 shear stress at inBingham model - 1/2 shear stress at = ( 0 + )/2 With 8 figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号