首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liposomes composed of DOPG and DMPC were studied for their ability to sequester amitriptyline and nortriptyline under physiological conditions. The liposomes reduced the free drug concentration in protein mixtures and in human serum, but the drug uptake efficiency of liposomes was reduced in the presence of plasma proteins, perhaps due to adsorption of proteins on the liposomes. The reduction was significantly more for the pure DOPG liposomes. The 50:50 DMPC:DOPG liposomes (0.72 mg lipid/mL) reduced the free amitriptyline concentration by 50-60% in the presence of 7% proteins (4% albumin (w/w), 2% fibrinogen (w/w), 1% globulins (w/w)). In human serum, the free drug reduction was 35-70% with the same 50:50 liposomes (0.72 mg lipid/mL). The liposomal systems were equally efficient at sequestering nortriptyline, which is a major metabolite of amitriptyline. The drug binding to liposomes in the presence of serum proteins is also quick and reversible and the likely mechanism of drug sequestration is adsorption of drug on the surface of liposomes. Accordingly, the drug uptake increases with increased charge and lipid loading. Even though the serum proteins reduced the effectiveness of the liposomes at sequestering the drug, the 50:50 DMPC:DOPG liposomes may be effective at treating amitriptyline overdose patients.  相似文献   

2.
Liposomes composed of DOPG, 50:50 DMPC:DOPG, 95:5 and 85:15 DOPG:DPPE-mPEG-2000, and 55:15:30 DMPC:DPPE-mPEG-2000:CH were studied for their ability to sequester amitriptyline in human serum. The effects of lipid type and loading, liposome size, PEG inclusion, protein interaction and storage were considered. Liposome size had no effect on drug uptake, as 40, 100, and 284 nm liposomes bound similar amounts of drug in buffer. The optimal amount of PEG-modified lipid incorporated into liposomes was found to be 5%. 95:5 DOPG:DPPE-mPEG-2000 liposomes loaded at 1.44 mg lipid/mL were most effective at shielding protein interactions while still allowing amitriptyline to diffuse to the bilayer surface and bind. Absolute reductions of 99% in buffer and human serum samples were observed, while the free drug concentration reduction relative to binding in serum without liposomes was nearly 90% across a drug concentration range of 1-20 muM. With such reductions, serum drug concentrations could be rapidly reduced from toxic to therapeutic levels. Furthermore, storage tests revealed that such liposomes may be stored for at least one month without a change in drug binding ability. These findings strongly suggest that predominantly anionic liposomes incorporated with PEG are excellent candidates for amitriptyline overdose treatment.  相似文献   

3.
In this paper, the effect of increasing amounts of lysozyme (Lyso) and bovine serum albumin (BSA) on the behaviour of lecithin (DMPC) and cephalin (DMPE) liposomes was investigated by means of Raman and DSC techniques. The results showed that both proteins affected, but in a different way, both lecithin and cephalin liposomes. In the samples with lower Lyso concentrations (up to 2 % w/w), a small decrease on the main transition temperature (T m) was observed, whereas T m increased by further addition of Lyso (up to 15.0 % w/w). At the same time, an increase of about 20 % in the ΔH of the transition was observed. Pre-transition was also affected in a greater extent by protein presence. When BSA interacted with liposomes, a smaller increase in the T m values was observed with a contemporary increase of about 8 % in the associated ΔH. The data suggested that the BSA–liposomes interaction involves only the external surface of the bilayer, excluding thus any penetration into the liposomal hydrophobic core. On the contrary, a partial penetration into the bilayer is suggested when Lyso is added to liposomes. Both considered proteins strengthened the overall bilayer structure of DMPC liposomes, suggesting a decrease in the membrane permeability. Moreover, Lyso secondary structure changed by interaction with liposomes, as demonstrated by the Raman spectra behaviour, in particular in the case of DMPE.  相似文献   

4.
It has been suggested that selective uptake of photosensitizers is due to significantly lower pH of the interstitial fluid in tumors compared to normal tissue. Therefore, the cellular uptake of merocyanine 540 (MC 540) was examined at two pH values: 6.8+/-0.1 and 7.4+/-0.1. There was no difference in spectral properties (absorption and fluorescence maxima positions, fluorescence intensity) of the drug in the presence of increasing amounts of either human blood plasma or FCS (0-2%) at the two pH values investigated. Nevertheless, significantly higher amounts of the drug were taken up by WiDr cells at pH 6.8+/-0.1, both in the presence of 10% FCS and in the absence of FCS. The absorption spectra of MC 540 in the presence of egg phosphatidylcholine (PC) liposomes turned out to be NaCl concentration-dependent (0.00-0.30 mol l(-1)). Membrane fluidity, as measured by fluorescence anisotropy of diphenylhexatriene (DPH), was unchanged within the experimental error in the NaCl concentration range 0.01-0.30 mol l(-1). The spectral changes indicated an enhancement of the incorporation of MC 540 into lipid membranes with increasing ionic strength. Such a salt concentration dependence suggests a possible involvement of the surface potential in the interaction of MC 540 with lipid membranes. The results might provide an explanation of the pH dependency of the cellular uptake of MC 540 observed in this study.  相似文献   

5.
Sugar parts play important roles in recognizing molecules on the cell membranes. We successfully produced sugar-type micellar surfactants, lactonoalkylamide (LacCn), for the first time. Spherical vesicles, three-component hybrid liposomes, were obtained after the sonication of the mixture of L-alpha-dimyristoyl-phosphatidylcholine (DMPC), Tween 20 and LacCn (DMPC:Tween 20:LacCn=65:7:28). It is noteworthy that high inhibitory effects of the three-component hybrid liposomes composed of DMPC, Tween 20, and LacCn (DMPC:Tween 20:LacCn=65:7:28) on the growth of glioma (U251) and lung adenocarcinoma (RERF-LC-OK) cells were attained in vitro without any drug, although no significant inhibitory effects of any individual component (DMPC, Tween 20, LacCn) or the two-component hybrid liposomes of DMPC and Tween 20 on the growth of tumor cells examined were obtained.  相似文献   

6.
The spectroscopy and photophysics of the photosensitizer hypericin when in homogeneous solutions and when bound to liposomes were studied. Hypericin was found to partition efficiently into DMPC liposomes, with a binding constant of 58 (mg lipid/mL)?1. In these liposomes the singlet oxygen production quantum yield was 0.43 ± 0.09. To determine the deactivation constant of singlet oxygen in lipid bilayers for the first time, we calculated extrapolated values from its quenching by DMPC and lecithin in homogeneous solutions and obtained decay times of 36.4 and 12.2 μs, respectively. We also measured the quenching of singlet oxygen, sensitized by hypericin in DMPC liposomes, by NaN3, diphenyl isobenzofuran and H2,O: D2O mixtures and explained the results on the basis of singlet oxygen diffusing rapidly out of the lipid bilayer into the aqueous medium. The observed temperature effect on the lifetime of singlet oxygen of about 50% over a 15°C range in liposome suspension contrasts with a 3% change in a homogeneous solution in 1-nonanol and is explained by the temperature effect on the diffusion out of the liposome. A strong pH effect was observed, indicating that the deprotonated species formed above about pH 10 is a much weaker photosensitizer of singlet oxygen than the native, protonated species.  相似文献   

7.
Binding of the drugs naproxen (which is an anti-inflammatory) and amitriptyline (which is an anti-depressant) to bovine serum albumin (BSA) has been studied using isothermal titration calorimetry (ITC), in combination with fluorescence and circular dichroism spectroscopies. Naproxen is observed to bind more strongly to BSA than amitriptyline. The temperature-dependent ITC results indicate the interaction of one molecule of naproxen with more than one protein molecule. On the other hand, amitriptyline binds to BSA with a reaction stoichiometry that varies from 1:1.2 to 1:2.9. The van't Hoff enthalpy, which is calculated from the temperature dependence of the binding constant, agrees well with the calorimetric enthalpy in the case of naproxen binding to BSA, indicating adherence to a two-state binding process. However, their disagreement in the case of amitriptyline indicates conformational changes in the protein upon ligand binding, as well as with the rise in temperature. The spectroscopic results did not suggest appreciable conformational changes as a result of binding; hence, the discrepancy could be attributed to the temperature-induced conformational changes. With increases in the ionic strength, a reduction in the binding affinity of naproxen to BSA is observed. This suggests the prevailing electrostatic interactions in the complexation process. The preponderance of the hydrophobic interactions in the binding of amitriptyline to BSA is indicated by the absence of any dependence of the ionic strength. A predominance of electrostatic interactions in the case of naproxen binding to BSA and that of hydrophobic interactions in the case of amitriptyline binding to BSA is further strengthened by the results of the binding experiments performed in the presence of ionic and nonionic surfactants. The binding parameters indicate that Triton X-100 blocks the hydrophobic binding sites on BSA, thereby altering the binding affinity of amitriptyline toward BSA. A partial overlap of the binding sites for these drugs is indicated by the binding parameters obtained in the titration of naproxen to the amitriptyline-BSA complex and vice versa. Thus, the results provide a quantitative understanding of the binding of naproxen and amitriptyline to BSA, which is important in understanding their effect as therapeutic agents individually and in combination therapy.  相似文献   

8.
In this article the novel design of an anticancer drug delivery system is reported based on a pH‐sensitive liposome retaining the Fe‐porphyrin as a superoxide dismutase(SOD) mimic. The liposomes contained cationic/anionic lipid combinations and were composed of Fe‐porphyrin, L ‐α‐phosphatidylcholine (DMPC), dimethylditetradecylammonium bromide (DTDAB), sodispdum oleate (OANa), and Tween‐80. The size of the liposome was approximately 30 nm. The EC50 value (the effective concentration of compound required to produce a 50% lethal dose against cells) of the liposome was found to be significantly smaller than that of cisplatin as the control drug, suggesting that the liposome showed a high cytotoxicity toward the cancer cells. This is due to the fact that the pH‐sensitive liposome rapidly corresponds to the acidic environments of the endosomes and is unstable, and the Fe‐porphyrin is delivered into the cytosol. This result suggests that O may be useful as a target molecule to induce the selective death of cancer cells and that a pH‐sensitive liposome retaining Fe‐porphyrin as an SOD mimic is a new class of anticancer agent. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
To describe the action mechanisms of Bacteriochlorin a (BCA), a second generation photosensitizer, in phosphate buffer (PB) and in dimyristoyl phosphatidylcholine (DMPC) liposomes we carried out oxygen consumption and ESR measurements. In PB, where BCA was in a monomer-dimer equilibrium, our results suggested that the oxygen consumption was related to the BCA monomers concentration in solution. Incorporation of BCA in DMPC liposomes, by promoting the monomerization of BCA, increased 9-fold the oxygen consumption in comparison to the value in PB. The use of specific singlet oxygen quenchers (Azide and 9,10-Anthracenedipropionic acid) in ESR and oxygen consumption experiments allowed us to assert that BCA was mainly a type II sensitizer when it was incorporated in DMPC. Finally, the cell survival of WiDr cells after a PDT treatment was measured for cells incubated with BCA in cell culture medium and cells incubated with BCA in DMPC. Irrespective of the dye concentration, the cell survival was lower when liposomes were used. This effect could be the result of a better BCA monomerization and/or a different BCA uptake in cells.  相似文献   

10.
The binding and detachment of carboxyl‐modified gold nanoparticles from liposomes is used for controlled drug delivery. This study reveals that the binding and detachment of nanoparticles from liposomes depends on the degree of hydration of the liposomes. Liposomes with a lower hydration level undergo stronger electrostatic interactions with negatively charged gold nanoparticles, thus leading to a slower detachment of the carboxyl‐modified gold nanoparticles under gastric conditions. Therefore, under gastric conditions, gold‐nanoparticle‐decorated dipalmitoylphosphatidylcholine (DPPC) liposomes exhibit an at least ten‐times‐slower drug release compared to gold‐nanoparticle‐decorated 1,2‐dimyristoyl‐sn‐glycero‐3‐phosphocholine (DMPC) liposomes, although both liposomes in the bare state fail to pursue controlled release. Our study also reveals that one can modulate the drug‐release rate by simply varying the concentration of nanoparticles. This study highlights a novel strategy for the controlled release of drug molecules from liposomes.  相似文献   

11.
A hard dextran-DEAE ion exchanger (Hard Dextran DEAE) was developed. It is hard and keeps good properties of dextran-DEAE for protein separation. It is not compressed in a column and can be used in much wider range of flow rate in the column than the commercial hard gel, DEAE Sepharose Fast Flow made of agarose. The saturation capacity of BSA on Hard Dextran DEAE is about 1.7 times of that on DEAE Sepharose Fast Flow at pH 6.9. Equilibrium isotherm for adsorption of BSA depends on pH considerably. When pH 5.5, the equilibrium isotherm is correlated by the Langmuir equation. When pH 5.05, the isotherm is correlated by the Freundlich equation. The higher the concentration of NaCl is, the smaller the amount of BSA adsorbed. When the concentration of NaCl is higher than 100 mol m–3 at pH 6.9 and 50 mol m–3 at pH 4.8, BSA was not adsorbed on the resin. This may suggest that BSA is adsorbed by electrostatic attraction. About 100 mol m–3 NaCl aqueous solution can be used as an eluant of proteins.  相似文献   

12.
Liposomes made with hydrogenated soya lecithin (HPC) mixed with dodecylcarbonate γ-cyclodextrin (C12CD) at 20:1, 10:1 and 5:1 w/w ratios were prepared by the solvent evaporation method. C12CD had emulsifying properties and the possibility of producing deformable liposomes, as topical delivery system of progesterone (PG), was evaluated. Liposome size, deformability and drug entrapment were determined and the interaction between C12CD and HPC was investigated using differential scanning calorimetry (DSC). The size and the amount of PG loaded in the liposomes depended on the lipid:C12CD ratio: the smallest liposomes were obtained using 20:1 ratio and the maximum drug entrapment at 5:1 ratio. DSC analysis suggested that C12CD interacted with liposomes disrupting and fluidizing the lipid bilayer. PG transepidermal permeation through intact pig skin and PG skin uptake from deformable liposomes were assessed and compared to the values obtained from aqueous suspension and conventional liposomes. The PG permeations were negligible for all systems, while skin uptake increased for liposomes containing C12CD. This was attributed to the deformability and to the increase in the drug entrapment efficiency of these liposomes. The use of C12CD in liposome formulations can improve PG topical therapy.  相似文献   

13.
Liposomes externally modified with the nineteen residues gH625 peptide, previously identified as a membrane‐perturbing domain in the gH glycoprotein of Herpes simplex virus type I, have been prepared in order to improve the intracellular uptake of an encapsulated drug. An easy and versatile synthetic strategy, based on click chemistry, has been used to bind, in a controlled way, several copies of the hydrophobic gH625 peptide on the external surface of 1,2‐dioleoyl‐sn‐glycero‐3‐phosphocholine (DOPG)‐based liposomes. Electron paramagnetic resonance studies, on liposomes derivatized with gH625 peptides, which are modified with the 2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐4‐amino‐4‐carboxylic acid (TOAC) spin label in several peptide positions, confirm the positioning of the coupled peptides on the liposome external surface, whereas dynamic light scattering measurements indicate an increase of the diameter of the liposomes of approximately 30 % after peptide introduction. Liposomes have been loaded with the cytotoxic drug doxorubicin and their ability to penetrate inside cells has been evaluated by confocal microscopy experiments. Results suggest that liposomes functionalized with gH625 may act as promising intracellular targeting carriers for efficient delivery of drugs, such as chemotherapeutic agents, into tumor cells.  相似文献   

14.
High capacity, charge-selective protein uptake by polyelectrolyte brushes   总被引:2,自引:0,他引:2  
Surface plasmon resonance was used to measure binding of proteins from solution to poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes end-grafted from gold surfaces by atom transfer radical polymerization (ATRP). PDMAEMA brushes were prepared with a variety of grafting densities and degrees of polymerization. These brushes displayed charge selective protein uptake. The extent of uptake for net negatively charged bovine serum albumin (BSA) scaled linearly with the surface mass concentration of grafted PDMAEMA, regardless of grafting density. BSA was bound at a constant ratio of 120 DMAEMA monomer units per protein molecule for all brushes examined. The equivalent three-dimensional concentration of BSA bound in the brush (i.e., the bound BSA surface excess concentration divided by the brush thickness) decreased monotonically with decreasing grafting density. The concentration of BSA bound within brushes prepared at higher grafting densities was comparable with the aqueous protein solubility limit. BSA desorption from the brush required changes in solution pH and/or ionic strength to eliminate its net electrostatic attraction to PDMAEMA. Net positively charged lysozyme was completely rejected by the PDMAEMA brushes.  相似文献   

15.
Vitamin C (L-ascorbic acid) has a major biological role as a natural antioxidant. Aspirin belongs to the nonsteroidal anti-inflammatory drugs and functions as an antioxidant via its ability to scavenge-OH radicals. Bovine serum albumin (BSA) is the major soluble protein constituent of the circulatory system and has many physiological functions including transport of a variety of compounds. In this report, the competitive binding of vitamin C and aspirin to bovine serum albumin has been studied using constant protein concentration and various drug concentrations at pH 7.2. FTIR and UV-Vis spectroscopic methods were used to analyze vitamin C and aspirin binding modes, the binding constants and the effects of drug complexation on BSA stability and conformation. Spectroscopic evidence showed that vitamin C and aspirin bind BSA via hydrophilic interactions (polypeptide and amine polar groups) with overall binding constants of K(vitamin C-BSA)=1.57×10(4)M(-1) and K(aspirin-BSA)=1.15×10(4)M(-1); assuming that there is one drug molecule per protein. The BSA secondary structure was altered with major decrease of α-helix from 64% (free protein) to 57% (BSA-vitamin C) and 54% (BSA-aspirin) and β-sheet from 15% (free protein) to 6-7% upon drug complexation, inducing a partial protein destabilization.  相似文献   

16.
Magnetic particles about 10 nm in size were prepared by chemical precipitation under nitrogen and used for the selective and sequential adsorption of bovine serum albumin (BSA) (pI = 4.7) and lysozyme (LSZ) (pI = 1.1) under different conditions, such as pH and initial protein concentration. The separation ratio of BSA over LSZ at pH 4.6 is about 5, which is about 1.5 times the separation ratio of LSZ over BSA at pH 11.0. Only 10% of the preadsorbed BSA could be displaced by the sequential adsorption of LSZ at pH 11.0. On the other hand, 60% of the preadsorbed LSZ was desorbed due to the sequential adsorption of BSA at pH 4.6. Over 50% desorption of BSA or LSZ could be achieved either by 0.5 M Na(2)HPO(4) or 0.5 M NaH(2)PO(4) after 2 h. Over 80% of the enzymatic activity of LSZ was preserved when it was desorbed from magnetic particles.  相似文献   

17.
A library of "hydraphile" synthetic ion channel analogues that differ in overall length from approximately 28-58 A has been prepared. A new and convenient ion-selective electrode (ISE) method was used to assay Na(+) release. Liposomes were formed from three different phospholipids: 1,2-dimyristoleoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and 1,2-dierucoyl-sn-glycero-3-phosphocholine (DEPC). The acyl chains of the lipids comprise cis-unsaturated 14:1, 18:1, or 22:1 residues, respectively. Sodium release was measured for each liposome system with each of the synthetic channels. Peak activity was observed for shorter channels in liposomes formed from DMPC and for longer channels in DEPC. A separate study was then conducted in DMPC liposomes in the presence of the putative membrane-thickening agents cholesterol and decane. Peak activity was clearly shifted to longer channel lengths upon addition of 20 or 40 mol % cholesterol or n-decane to the liposome preparation.  相似文献   

18.
To obtain information about the factors governing spontaneous inter-membrane protein transfer, we examined the effects of incorporation of various amphiphilic compounds in dimyristoylphosphatidylcholine (DMPC) liposomes on protein transfer from influenza virus-infected cells to the liposomes, and analyzed the physical properties of these liposome membranes. The incorporation of amphiphilic compounds, negatively charged dicetylphosphate (DCP), dipalmitoylphosphatidylserine (DPPS) or positively charged dimethyldipalmitoylammonium (DMDPA), into DMPC liposomal membranes enhanced protein transfer. The liposomes containing DCP, DPPS or DMDPA were unaffected by osmotic shock caused by external addition of glucose, suggesting a decrease in lipid packing in the liposomal membranes. Furthermore, calorimetric study of these liposomes showed that a phase separation occurred partially in the liposomal membranes. Accordingly, the membranes of DMPC liposomes containing DCP, DPPS and DMDPA should be distorted due to the coexistence of two phases, gel and liquid crystalline, in the membranes. Consequently, the membrane distortion could be responsible for the enhancement effects of the amphiphiles on the inter-membrane protein transfer from influenza virus-infected cells to the liposomes.  相似文献   

19.
The kinetic investigations of oxidation of tris(1,10-phenanthroline)iron(II) by oxone have been studied spectrophotometrically in phosphate buffer medium of pH 6.8, temperature 308 K, and ionic strength 0.25 mol L(-1). The reactions were also carried out in presence of globular transport protein, bovine serum albumin (BSA) having isoelectric point 4.9, anionic surfactant sodium dodecyl sulfate (SDS), and their mixtures. The critical aggregation concentration (CAC) and critical micelle concentration (CMC) of SDS in presence of BSA have been determined using conductivity and kinetic measurement techniques. The secondary structure of BSA was examined by Circular Dichroism (CD) measurement at 308 K. The helix nature of BSA decreases with increase of SDS concentration. The effect of pH on rate in presence of BSA is opposite to its absence, and the effect of urea on rate in presence of BSA indicates the denaturation of BSA. The results depict that amphiphile SDS interacts with BSA and different molecular events, for example, specific binding, cooperative binding, protein unfolding, and micelle formation act. Activation parameters of the reaction in different environments have been determined.  相似文献   

20.
三七总皂甙对牛血清白蛋白溶液构象的影响   总被引:25,自引:5,他引:25  
刘媛  谢孟峡  康娟 《化学学报》2003,61(8):1305-1310
应用衰减全反射傅立叶变换红外光谱结合荧光光谱和紫外光谱研究了中药三七 的有效成分三七总皂甙与牛血清白蛋白(BSA)的相互作用,采用对蛋白质红外光 谱酰氨Ⅰ带和酰氨Ⅲ带进行曲线拟合的方法,定量分析了不同浓度三七总皂甙对 BSA二级结构的影响,发现随着三七总皂甙浓度的增加,蛋白分子结构逐渐发生了 由螺旋向折叠的转化。a-螺旋结构减少了3%,β-折叠结构增加了约5%,其它二级 结构没有明显的变化,红外差谱和荧光光谱的结果为药物与蛋白质的作用引起牛血 清白蛋白溶液构象的变化提供了佐证,紫外光谱反映了单体皂甙与蛋白质的结合常 数的差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号