首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Injection molded poly(methylmethacrylate) (IM-PMMA), chips were evaluated as potential candidates for capillary electrophoresis disposable chip applications. Mass production and usage of plastic microchips depends on chip-to-chip reproducibility and on analysis accuracy. Several important properties of IM-PMMA chips were considered: fabrication quality evaluated by environmental scanning electron microscope imaging, surface quality measurements, selected thermal/electrical properties as indicated by measurement of the current versus applied voltage (I-V) characteristic and the influence of channel surface treatments. Electroosmotic flow was also evaluated for untreated and O2 reactive ion etching (RIE) treated surface microchips. The performance characteristics of single lane plastic microchip capillary electrophoresis (MCE) separations were evaluated using a mixture of two dyes-fluorescein (FL) and fluorescein isothiocyanate (FITC). To overcome non-wettability of the native IM-PMMA surface, a modifier, polyethylene oxide was added to the buffer as a dynamic coating. Chip performance reproducibility was studied for chips with and without surface modification via the process of RIE with O2 and by varying the hole position for the reservoir in the cover plate or on the pattern side of the chip. Additionally, the importance of reconditioning steps to achieve optimal performance reproducibility was also examined. It was found that more reproducible quantitative results were obtained when normalized values of migration time, peak area and peak height of FL and FITC were used instead of actual measured parameters.  相似文献   

2.
Inexpensive and disposable polyester microchips were fabricated through photolithographic and wet-chemical etching procedure, followed by replication using an imprinting method at room temperature. Laboratory-scale laser-induced fluorescence equipment was employed as a detection system. The generation of electroosmotic flow (EOF) on the polyester channels was discussed in this paper. Surfactants in the running buffer had a significant effect on the EOF depending on their types. The epsilon potential of the electric double layer formed by adsorbing sodium lauryl sulfate molecules on the wall of polyester channels seemed to be constant within the buffer pH investigated. EOF could also be suppressed to zero by adding polyoxyethylene 23 lauryl ether into the running buffer. The separation of two laser dyes was obtained using polyester chips through both micellar electrokinetic chromatography and capillary zone electrophoresis. The polyester channels modified with 10-undecen-1-ol exhibited a dramatically high-separation efficiency compared with the conventional fused-silica capillary tubes.  相似文献   

3.
A fully disposable microanalytical device based on combination of poly(methylmethacrylate) (PMMA) capillary electrophoresis microchips and thick-film electrochemical detector strips is described. Variables influencing the separation efficiency and amperometric response, including separation voltage or detection potential are assessed and optimized. The versatility, simplicity and low-cost advantages of the new design are coupled to an attractive analytical performance, with good precision (relative standard deviation RSD = 1.68% for n = 10). Applicability for assays of mixtures of hydrazine, phenolic compounds, and catecholamines is demonstrated. Such coupling of low-cost PMMA-based microchips with thick-film electrochemical detectors holds great promise for mass production of single-use micrototal analytical systems.  相似文献   

4.
This article presents an overview of various miniaturized devices and technologies developed by our group. Innovative, fast and cheap procedures for the fabrication of laboratory microsystems based on commercially available materials are reported and compared with well-established microfabrication techniques. The modules fabricated and tested in our laboratory can be used independently or they can be set up in different configurations to form functional measurement systems. We also report further applications of the presented modules e.g. disposable poly(dimethylsiloxane) (PDMS) microcuvettes, fibre optic detectors, potentiometric sensors platforms, microreactors and capillary electrophoresis (CE) microchips as well as integrated microsystems e.g. double detection microanalytical systems, devices for studying enzymatic reactions and a microsystem for cell culture and lysis.  相似文献   

5.
The present study shows that the application of the method of affinity capillary electrophoresis (ACE) to investigate interactions between ligands and their substrates can be realized on microchips. With ACE it is possible to characterize non-covalent molecular interactions (complexation and partition equilibria). Binding constants (K(B)) provide a measured value of the affinity of a ligand molecule to a substrate, which is basic information for the understanding of hormones, drugs and their targets, e.g. receptors in the human body. A microchip electrophoresis instrument equipped with a UV-detector and a home-built chip-station with electrochemical detection were used. ACE could be achieved with model solutions of neurotransmitters using sulfated beta-cyclodextrin (sCD) as substrate in a background buffer. This paper describes the advantages of microchip-ACE (MC-ACE) to traditional affinity capillary electrophoresis on a capillary. The results show that MC-ACE has great potential as a tool for fast scanning of interactions and to calculate binding constants of ligands with their substrates.  相似文献   

6.
Xu G  Wang J  Chen Y  Zhang L  Wang D  Chen G 《Lab on a chip》2006,6(1):145-148
A novel method based on in situ surface polymerization of methyl methacrylate (MMA) has been developed for the rapid fabrication of poly(methyl methacrylate) (PMMA) capillary electrophoresis (CE) microchips. MMA containing both thermal and ultraviolet (UV) initiators was allowed to prepolymerize in a water bath to form a fast curing molding solution that was subsequently sandwiched between a nickel template and a PMMA plate. The images of the raised microchannels on the nickel template were precisely replicated into the synthesized PMMA substrates during the UV-initiated polymerization of the molding solution within 30 min under ambient temperature. The attractive performances of the novel PMMA microchips have been demonstrated in connection with amperometric detection for the separation and detection of several model analytes. The new approach significantly simplifies the process for fabricating PMMA devices and could be applied to other materials that undergo light-initiated polymerization.  相似文献   

7.
Several anomalies, e.g., in peak shape, migration time, and baseline drift, all due to pressure-driven backflow, were previously reported to occur during serial injection on capillary electrophoresis (CE) chips. Since these anomalies were worse for polydimethylsiloxane (PDMS) microchips than for glass microchips, reproducible data on PDMS microchips were difficult to obtain. In this paper, we found that these problems were affected by the hydrophilic or hydrophobic properties of the reservoirs on the microchip and demonstrated that these anomalies were reduced by converting the hydrophobic properties of the reservoirs on the PDMS microchip into hydrophilic ones. Thus, compared with hydrophobic reservoirs, hydrophilic reservoirs were suitable for the formation of a stable plug. Several chip designs were suggested to reduce these pressure-driven backflows.  相似文献   

8.
Chen Z  Gao Y  Lin J  Su R  Xie Y 《Journal of chromatography. A》2004,1038(1-2):239-245
An improved fabrication of poly(methyl methacrylate) (PMMA)-based capillary electrophoresis microchips has been demonstrated. The microchannel structures on PMMA substrates were generated by one-step hot embossing procedure using a stainless steel template. Hundreds of patterned PMMA substrates have been successfully obtained using the single metal template. Sequent microchannel enclosure with high yield up to 90% was accomplished by a vacuum-assisted thermal bonding method. The results of profilometric scanning of separated substrates showed the dimensions of the channels were well preserved during the bonding process. Finally, analytical functionalities of these PMMA microchips were demonstrated by performing fast electrophoretic separations and high sensitive end-column amperometric detections of dopamine and catechol. The entire fabrication methodology may also be useful for preparation of other thermoplastic microfluidic systems.  相似文献   

9.
This review gives a summary of applications of different nanomateials, such as gold nanoparticles (AuNPs), carbon‐based nanoparticles, magnetic nanoparticles (MNPs), and nano‐sized metal organic frameworks (MOFs), in electrophoretic separations. This review also emphasizes the recent works in which nanoparticles (NPs) are used as pseudostationary phase (PSP) or immobilized on the capillary surface for enhancement of separation in CE, CEC, and microchips electrophoresis.  相似文献   

10.
A microchip structure for field amplification stacking (FAS) was developed, which allowed the formation of comparatively long, volumetrically defined sample plugs with a minimal electrophoretic bias. Up to 20-fold signal gains were achieved by injection and separation of 400 microm long plugs in a 7.5 cm long channel. We studied fluidic effects arising when solutions with mismatched ionic strengths are electrokinetically handled on microchips. In particular, the generation of pressure-driven Poiseuille flow effects in the capillary system due to different electroosmotic flow velocities in adjacent solution zones could clearly be observed by video imaging. The formation of a sample plug, stacking of the analyte and subsequent release into the separation column showed that careful control of electric fields in the side channels of the injection element is essential. To further improve the signal gain, a new chip layout was developed for full-column stacking with subsequent sample matrix removal by polarity switching. The design features a coupled-column structure with separate stacking and capillary electrophoresis (CE) channels, showing signal enhancements of up to 65-fold for a 69 mm long stacking channel.  相似文献   

11.
Yu H  He FY  Lu Y  Hu YL  Zhong HY  Xia XH 《Talanta》2008,75(1):43-48
Separation and determination of dopamine and epinephrine with end-channel electrochemical (EC) detection integrated on a native printed microchip capillary electrophoresis (CE) system was investigated. Factors influencing the separation and detection were investigated and optimized. Results show manipulating EOF, which can be easily achieved by adjusting buffer pH, is a simple and effective way to achieve the baseline separation of dopamine and epinephrine in native polymeric microchips. Without surface modification of microchannel, printed microchips with advantages of low cost and easy preparation can achieve high performance like other microfluidic devices.  相似文献   

12.
In recent years, chemiluminescence (CL)-based detection coupled to capillary electrophoresis (CE) as separation technique has attracted much interest due to new advances in home-made configurations, sample-treatment techniques for application to real matrixes, development of a commercial instrument and use of miniaturization techniques to obtain micro total analysis systems incorporating CE separation and CL detection in microchips. We present some developments, key strategies and selected analytical applications of CE-CL since the year 2000 in diverse fields (e.g., clinical and pharmaceutical, environmental or food analysis).  相似文献   

13.
Wall coating for capillary electrophoresis on microchips   总被引:2,自引:0,他引:2  
Dolník V 《Electrophoresis》2004,25(21-22):3589-3601
This review article with 116 references describes recent developments in the preparation of wall coatings for capillary electrophoresis (CE) on a microchip. It deals with both dynamic and permanent coatings and concentrates on the most frequently used microchip materials including glass, poly(methyl methacrylate), poly(dimethyl siloxane), polycarbonate, and poly(ethylene terephthalate glycol). Characterization of the channel surface by measuring electroosmotic mobility and water contact angle of the surface is included as well. The utility of the microchips with coated channels is demonstrated by examples of CE separations on these chips.  相似文献   

14.
Point‐of‐care systems based on microchip capillary electrophoresis require single‐use, disposable microchips prefilled with all necessary solutions so an untrained operator only needs to apply the sample and perform the analysis. While microchip fabrication can be (and has been) standardized, some manufacturing differences between microchips are unavoidable. To improve analyte precision without increasing device costs or introducing additional error sources, we recently proposed the use of integrated internal standards (ISTDs): ions added to the BGE in small concentrations which form system peaks in the electropherogram that can be used as a measurement reference. Here, we further expand this initial proof‐of‐principle test to study a clinically‐relevant application of K ion concentrations in human blood; however, using a mock blood solution instead of real samples to avoid interference from other obstacles (e.g. cell lysis). Cs as an integrated ISTD improves repeatability of K ion migration times from 6.97% to 0.89% and the linear calibration correlation coefficient (R2) for K quantification from 0.851 to 0.967. Peak area repeatability improves from 11.6–13.3% to 4.75–5.04% at each K concentration above the LOQ. These results further validate the feasibility of using integrated ISTDs to improve imprecision in disposable microchip CE devices by demonstrating their application for physiological samples.  相似文献   

15.
A capillary electrophoresis (CE) microchip made of a new and promising polymeric material: Topas (thermoplastic olefin polymer of amorphous structure), a cyclic olefin copolymer with high chemical resistance, has been tested for the first time with analytical purposes, employing an electrochemical detection. A simple end-channel platinum amperometric detector has been designed, checked, and optimized in a poly-(methylmethacrylate) (PMMA) CE microchip. The end-channel design is based on a platinum wire manually aligned at the exit of the separation channel. This is a simple and durable detection in which the working electrode is not pretreated. H(2)O(2) was employed as model analyte to study the performance of the PMMA microchip and the detector. Factors influencing migration and detection processes were examined and optimized. Separation of H(2)O(2) and L-ascorbic acid (AsA) was developed in order to evaluate the efficiency of microchips using different buffer systems. This detection has been checked for the first time with a microchip made of Topas, obtaining a good linear relationship for mixtures of H(2)O(2) and AsA in different buffers.  相似文献   

16.
Totally porous lipid‐based liquid crystalline nanoparticles were used as pseudostationary phase for capillary electroseparation with LIF detection of proteins at physiological conditions using unmodified cyclic olefin copolymer capillaries (Topas®, 6.7 cm effective length). In the absence of nanoparticles, i.e. in CE mode, the protein samples adsorbed completely to the capillary walls and could not be recovered. In contrast, nanoparticle‐based capillary electroseparation resolved green fluorescent protein from several of its impurities within 1 min. Furthermore, a mixture of native green fluorescent protein and two of its single‐amino‐acid‐substituted variants was separated within 2.5 min with efficiencies of 400 000 plates/m. The nanoparticles prevent adsorption by introducing a large interacting surface and by obstructing the attachment of the protein to the capillary wall. A one‐step procedure based on self‐assembly of lipids was used to prepare the nanoparticles, which benefit from their biocompatibility and suspension stability at high concentrations. An aqueous tricine buffer at pH 7.5 containing lipid‐based nanoparticles (2% w/w) was used as electrolyte, enabling separation at protein friendly conditions. The developed capillary‐based method facilitates future electrochromatography of proteins on polymer‐based microchips under physiological conditions and enables the initial optimization of separation conditions in parallel to the chip development.  相似文献   

17.
To realize portable systems for routine measurements in point‐of‐care settings, MCE methods are required to be robust across many single‐use chips. While it is well‐known internal standards (ISTDs) improve run‐to‐run precision, a systematic investigation is necessary to determine the significance of chip‐to‐chip imprecision in MCE and how ISTDs account for it. This paper addresses this question by exploring the reproducibility of Na quantification across six basic, in‐house fabricated microchips. A dataset of 900 electrophoerograms was collected from analyzing five concentrations of NaCl with two ISTDs (CsCl and LiCl). While both improved the peak area reproducibility, the Na/Cs ratio was superior to the Na/Li ratio (improving the RSD by a factor of 2–4, depending on the Na concentration). We attribute this to the significant variation in microchannel surface properties, which was accounted for by cesium but not lithium. Microchip dimension and detector variations were only a few percent, and could be improved through commercial fabrication over in‐house made microchips. These results demonstrate that ISTDs not only correct for intrachip imprecision, but are also a viable means to correct for chip‐to‐chip imprecision inherent in disposable, point‐of‐care MCE devices. However, as expected, the internal standard must be carefully chosen.  相似文献   

18.
Sun Y  Kwok YC  Nguyen NT 《Electrophoresis》2007,28(24):4765-4768
Joule heating generated in CE microchips is known to affect temperature gradient, electrophoretic mobility, diffusion of analytes, and ultimately the efficiency and reproducibility of the separation. One way of reducing the effect of Joule heating is to decrease the cross-section area of microchannels. Currently, due to the limit of fabrication technique and detection apparatus, the typical dimensions of CE microchannels are in the range of 50-200 microm. In this paper, we propose a novel approach of performing microchip CE in a bundle of extremely narrow channels by using photonic crystal fiber (PCF) as separation column. The PCF was simply encapsulated in a poly(methyl methacrylate) (PMMA) microchannel right after a T-shaped injector. CE was simultaneously but independently carried out in 54 narrow capillaries, each capillary with diameter of 3.7 microm. The capillary bundle could sustain high electric field strength up to 1000 V/cm due to efficient heat dissipation, thus faster and enhanced separation was attained.  相似文献   

19.
We have developed an analytical method using microchip capillary electrophoresis (microchip CE) for the high-speed separation of fluorescein-labeled salivary components in response to exercise stress. Optimal separation was obtained using a borate buffer at pH 9.5 containing 10 mM beta-cyclodextrin and 1.0% (w/v) methylcellulose. To minimize individual differences in human saliva, such as viscosity, conductivity, and contaminants, the concentration of methylcellulose in the analytical conditions played a key factor. The optimized separation conditions produced identical electropherograms successfully despite of the use of different microchips made from quartz glass or poly-methylmethacrylate (PMMA). In addition, a practical application of bicycle ergometer stress was performed. Some components in human saliva showed a marked decrease after exercise stress.  相似文献   

20.
The review provides a comprehensive survey of the recent applications of contact and contactless conductivity detection in capillary electrophoretic and chip electrophoretic analyses of a broad scale of compounds, from low-molecular-mass highly mobile small inorganic and organic ions, via medium-molecular-mass peptides and oligo- and polynucleotides up to high-molecular-mass biopolymers, proteins and nucleic acids fragments. The review presents also the recent developments in the construction of different types of conductivity detectors (detectors with galvanic contact of the sensing electrodes with the BGE and sample components, contactless conductivity detectors with capacitively coupled tubular and semitubular electrodes and combined conductivity/optical detectors) applied in the capillary electromigration methods performed in classical fused silica, polytetrafluorethylene, and polyetheretherketone capillaries or on glass and polymethylmethacrylate microchips. In addition, the principle and theoretical bases of conductivity detection in capillary electromigration techniques, zone electrophoresis, ITP, micellar EKC, and electrochromatography are briefly described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号