首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To predict future claims, it is well-known that the most recent claims are more predictive than older ones. However, classic panel data models for claim counts, such as the multivariate negative binomial distribution, do not put any time weight on past claims. More complex models can be used to consider this property, but often need numerical procedures to estimate parameters. When we want to add a dependence between different claim count types, the task would be even more difficult to handle. In this paper, we propose a bivariate dynamic model for claim counts, where past claims experience of a given claim type is used to better predict the other type of claims. This new bivariate dynamic distribution for claim counts is based on random effects that come from the Sarmanov family of multivariate distributions. To obtain a proper dynamic distribution based on this kind of bivariate priors, an approximation of the posterior distribution of the random effects is proposed. The resulting model can be seen as an extension of the dynamic heterogeneity model described in Bolancé et al. (2007). We apply this model to two samples of data from a major Canadian insurance company, where we show that the proposed model is one of the best models to adjust the data. We also show that the proposed model allows more flexibility in computing predictive premiums because closed-form expressions can be easily derived for the predictive distribution, the moments and the predictive moments.  相似文献   

2.
This paper considers statistical modeling of the types of claim in a portfolio of insurance policies. For some classes of insurance contracts, in a particular period, it is possible to have a record of whether or not there is a claim on the policy, the types of claims made on the policy, and the amount of claims arising from each of the types. A typical example is automobile insurance where in the event of a claim, we are able to observe the amounts that arise from say injury to oneself, damage to one’s own property, damage to a third party’s property, and injury to a third party. Modeling the frequency and the severity components of the claims can be handled using traditional actuarial procedures. However, modeling the claim-type component is less known and in this paper, we recommend analyzing the distribution of these claim-types using multivariate probit models, which can be viewed as latent variable threshold models for the analysis of multivariate binary data. A recent article by Valdez and Frees [Valdez, E.A., Frees, E.W., Longitudinal modeling of Singapore motor insurance. University of New South Wales and the University of Wisconsin-Madison. Working Paper. Dated 28 December 2005, available from: http://wwwdocs.fce.unsw.edu.au/actuarial/research/papers/2006/Valdez-Frees-2005.pdf] considered this decomposition to extend the traditional model by including the conditional claim-type component, and proposed the multinomial logit model to empirically estimate this component. However, it is well known in the literature that this type of model assumes independence across the different outcomes. We investigate the appropriateness of fitting a multivariate probit model to the conditional claim-type component in which the outcomes may in fact be correlated, with possible inclusion of important covariates. Our estimation results show that when the outcomes are correlated, the multinomial logit model produces substantially different predictions relative to the true predictions; and second, through a simulation analysis, we find that even in ideal conditions under which the outcomes are independent, multinomial logit is still a poor approximation to the true underlying outcome probabilities relative to the multivariate probit model. The results of this paper serve to highlight the trade-off between tractability and flexibility when choosing the appropriate model.  相似文献   

3.
In the general insurance modeling literature, there has been a lot of work based on univariate zero-truncated models, but little has been done in the multivariate zero-truncation cases, for instance a line of insurance business with various classes of policies. There are three types of zero-truncation in the multivariate setting: only records with all zeros are missing, zero counts for one or some classes are missing, or zeros are completely missing for all classes. In this paper, we focus on the first case, the so-called Type I zero-truncation, and a new multivariate zero-truncated hurdle model is developed to study it. The key idea of developing such a model is to identify a stochastic representation for the underlying random variables, which enables us to use the EM algorithm to simplify the estimation procedure. This model is used to analyze a health insurance claims dataset that contains claim counts from different categories of claims without common zero observations.  相似文献   

4.
In actuarial science, collective risk models, in which the aggregate claim amount of a portfolio is defined in terms of random sums, play a crucial role. In these models, it is common to assume that the number of claims and their amounts are independent, even if this might not always be the case. We consider collective risk models with different dependence structures. Due to the importance of such risk models in an actuarial setting, we first investigate a collective risk model with dependence involving the family of multivariate mixed Erlang distributions. Other models based on mixtures involving bivariate and multivariate copulas in a more general setting are then presented. These different structures allow to link the number of claims to each claim amount, and to quantify the aggregate claim loss. Then, we use Archimedean and hierarchical Archimedean copulas in collective risk models, to model the dependence between the claim number random variable and the claim amount random variables involved in the random sum. Such dependence structures allow us to derive a computational methodology for the assessment of the aggregate claim amount. While being very flexible, this methodology is easy to implement, and can easily fit more complicated hierarchical structures.  相似文献   

5.
In nonlife insurance, frequency and severity are two essential building blocks in the actuarial modeling of insurance claims. In this paper, we propose a dependent modeling framework to jointly examine the two components in a longitudinal context where the quantity of interest is the predictive distribution. The proposed model accommodates the temporal correlation in both the frequency and the severity, as well as the association between the frequency and severity using a novel copula regression. The resulting predictive claims distribution allows to incorporate the claim history on both the frequency and severity into ratemaking and other prediction applications. In this application, we examine the insurance claim frequencies and severities for specific peril types from a government property insurance portfolio, namely lightning and vehicle claims, which tend to be frequent in terms of their count. We discover that the frequencies and severities of these frequent peril types tend to have a high serial correlation over time. Using dependence modeling in a longitudinal setting, we demonstrate how the prediction of these frequent claims can be improved.  相似文献   

6.
Traditionally, claim counts and amounts are assumed to be independent in non-life insurance. This paper explores how this often unwarranted assumption can be relaxed in a simple way while incorporating rating factors into the model. The approach consists of fitting generalized linear models to the marginal frequency and the conditional severity components of the total claim cost; dependence between them is induced by treating the number of claims as a covariate in the model for the average claim size. In addition to being easy to implement, this modeling strategy has the advantage that when Poisson counts are assumed together with a log-link for the conditional severity model, the resulting pure premium is the product of a marginal mean frequency, a modified marginal mean severity, and an easily interpreted correction term that reflects the dependence. The approach is illustrated through simulations and applied to a Canadian automobile insurance dataset.  相似文献   

7.
This paper illustrates the modeling of dependence structures of non-life insurance risks using the Bernstein copula. We conduct a goodness-of-fit analysis and compare the Bernstein copula with other widely used copulas. Then, we illustrate the use of the Bernstein copula in a value-at-risk and tail-value-at-risk simulation study. For both analyses we utilize German claims data on storm, flood, and water damage insurance for calibration. Our results highlight the advantages of the Bernstein copula, including its flexibility in mapping inhomogeneous dependence structures and its easy use in a simulation context due to its representation as mixture of independent Beta densities. Practitioners and regulators working toward appropriate modeling of dependences in a risk management and solvency context can benefit from our results.  相似文献   

8.
Modeling dependence in high-dimensional systems has become an increasingly important topic. Most approaches rely on the assumption of a multivariate Gaussian distribution such as statistical models on directed acyclic graphs (DAGs). They are based on modeling conditional independencies and are scalable to high dimensions. In contrast, vine copula models accommodate more elaborate features like tail dependence and asymmetry, as well as independent modeling of the marginals. This flexibility comes however at the cost of exponentially increasing complexity for model selection and estimation. We show a novel connection between DAGs with limited number of parents and truncated vine copulas under sufficient conditions. This motivates a more general procedure exploiting the fast model selection and estimation of sparse DAGs while allowing for non-Gaussian dependence using vine copulas. By numerical examples in hundreds of dimensions, we demonstrate that our approach outperforms the standard method for vine structure selection. Supplementary material for this article is available online.  相似文献   

9.
When actuaries face the problem of pricing an insurance contract that contains different types of coverage, such as a motor insurance or a homeowner’s insurance policy, they usually assume that types of claim are independent. However, this assumption may not be realistic: several studies have shown that there is a positive correlation between types of claim. Here we introduce different multivariate Poisson regression models in order to relax the independence assumption, including zero-inflated models to account for excess of zeros and overdispersion. These models have been largely ignored to date, mainly because of their computational difficulties. Bayesian inference based on MCMC helps to resolve this problem (and also allows us to derive, for several quantities of interest, posterior summaries to account for uncertainty). Finally, these models are applied to an automobile insurance claims database with three different types of claim. We analyse the consequences for pure and loaded premiums when the independence assumption is relaxed by using different multivariate Poisson regression models together with their zero-inflated versions.  相似文献   

10.
Quantile regression model estimates the relationship between the quantile of a response distribution and the regression parameters, and has been developed for linear models with continuous responses. In this paper, we apply Bayesian quantile regression model for the Malaysian motor insurance claim count data to study the effects of change in the estimates of regression parameters (or the rating factors) on the magnitude of the response variable (or the claim count). We also compare the results of quantile regression models from the Bayesian and frequentist approaches and the results of mean regression models from the Poisson and negative binomial. Comparison from Poisson and Bayesian quantile regression models shows that the effects of vehicle year decrease as the quantile increases, suggesting that the rating factor has lower risk for higher claim counts. On the other hand, the effects of vehicle type increase as the quantile increases, indicating that the rating factor has higher risk for higher claim counts.  相似文献   

11.
Generalized linear models are common instruments for the pricing of non-life insurance contracts. They are used to estimate the expected frequency and severity of insurance claims. However, these models do not work adequately for extreme claim sizes. To accommodate for these extreme claim sizes, we develop the threshold severity model, that splits the claim size distribution in areas below and above a given threshold. More specifically, the extreme insurance claims above the threshold are modeled in the sense of the peaks-over-threshold methodology from extreme value theory using the generalized Pareto distribution for the excess distribution, and the claims below the threshold are captured by a generalized linear model based on the truncated gamma distribution. Subsequently, we develop the corresponding concrete log-likelihood functions above and below the threshold. Moreover, in the presence of simulated extreme claim sizes following a log-normal as well as Burr Type XII distribution, we demonstrate the superiority of the threshold severity model compared to the commonly used generalized linear model based on the gamma distribution.  相似文献   

12.
The aim of the paper is to introduce new claim count distributions constructed from different waiting time assumptions, such as the Exponential, Gamma and Weibull distributions. These models are then fitted to panel data with Gamma distributed random effects. The random effects allow for serial dependence and take residual heterogeneity into account. Predictive distributions are obtained with the help of Markov Chain Monte Carlo simulations. The approach is illustrated on the basis of a Belgian motor third party liability insurance portfolio observed for three years.  相似文献   

13.
In risk management, ignoring the dependence among various types of claims often results in over-estimating or under-estimating the ruin probabilities of a portfolio. This paper focuses on three commonly used ruin probabilities in multivariate compound risk models, and using the comparison methods shows how some ruin probabilities increase, whereas the others decrease, as the claim dependence grows. The paper also presents some computable bounds for these ruin probabilities, which can be calculated explicitly for multivariate phase-type distributed claims, and illustrates the performance of these bounds for the multivariate compound Poisson risk models with slightly or highly dependent Marshall-Olkin exponential claim sizes.  相似文献   

14.
关于参数型copula函数的拟合检验   总被引:1,自引:0,他引:1  
在金融和保险中,copula函数是一种构造多元相关分布函数的有力工具.然而,怎样选择一个适当的copula函数用于拟合数据,并没有找到统一的方法.因此,基于copula函数的经验分布,我们提出了一种用于检验具有某种特定参数结构的copula函数拟合数据优良性的方法,并得到了此检验的渐近性质.由于该检验统计量的极限分布依赖未知参数,我们采用非参数蒙特卡罗方法确定临界值.我们做了一个简单的模拟来验证本文提出的检验方法的功效.  相似文献   

15.
In automobile insurance, it is useful to achieve a priori ratemaking by resorting to generalized linear models, and here the Poisson regression model constitutes the most widely accepted basis. However, insurance companies distinguish between claims with or without bodily injuries, or claims with full or partial liability of the insured driver. This paper examines an a priori ratemaking procedure when including two different types of claim. When assuming independence between claim types, the premium can be obtained by summing the premiums for each type of guarantee and is dependent on the rating factors chosen. If the independence assumption is relaxed, then it is unclear as to how the tariff system might be affected. In order to answer this question, bivariate Poisson regression models, suitable for paired count data exhibiting correlation, are introduced. It is shown that the usual independence assumption is unrealistic here. These models are applied to an automobile insurance claims database containing 80,994 contracts belonging to a Spanish insurance company. Finally, the consequences for pure and loaded premiums when the independence assumption is relaxed by using a bivariate Poisson regression model are analysed.  相似文献   

16.
在假设各个业务线的增量已决赔款服从伽玛分布、逆高斯分布和对数正态分布的基础上,建立了各个业务线增量已决赔款的GAMLSS模型,并将此模型应用于一组具有明显异方差的车险数据,拟合效果优于均值回归模型.另外,在多个业务线的准备金估计中,不同业务线之间的相依性通过藤Copula函数来描述.用D藤Copula描述相依关系的GAMLSS模型对准备金的评估结果既优于独立假设下的GAMLSS模型和链梯法对准备金的评估结果,同时还刻画了不同业务线之间的尾部相依性.  相似文献   

17.
The analysis of multivariate time series is a common problem in areas like finance and economics. The classical tools for this purpose are vector autoregressive models. These however are limited to the modeling of linear and symmetric dependence. We propose a novel copula‐based model that allows for the non‐linear and non‐symmetric modeling of serial as well as between‐series dependencies. The model exploits the flexibility of vine copulas, which are built up by bivariate copulas only. We describe statistical inference techniques for the new model and discuss how it can be used for testing Granger causality. Finally, we use the model to investigate inflation effects on industrial production, stock returns and interest rates. In addition, the out‐of‐sample predictive ability is compared with relevant benchmark models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
在不指定时间序列结构的情况下,我们的分布模型是基于多变量离散时间的相应马尔可夫族和相关变量一维的边际分布.这样的模型可以同时处理时间序列之间的相互依赖和每个时间序列沿时间方向的依赖.具体的参数copula被指定为倾斜-t. 倾斜-t Copla能够处理不对称,偏斜和粗尾的数据分布.三个股票指数日均收益的实证研究表明,倾斜-t copula的马尔可夫模型要比以下模型更好:倾斜正态Copula马可夫, t-copula马可夫, 倾斜-t copula但无马尔可夫特性.  相似文献   

19.
To facilitate applications in general insurance, some extensions are proposed to cluster-weighted models (CWMs). First, we extend CWMs to have generalized cluster-weighted models (GCWMs) by allowing modeling of non-Gaussian distribution of the continuous covariates, as they frequently occur in insurance practice. Secondly, we introduce a zero-inflated extension of GCWM (ZI-GCWM) for modeling insurance claims data with excess zeros coming from heterogeneous sources. Additionally, we give two expectation–optimization (EM) algorithms for parameter estimation given in the proposed models. An appropriate simulation study shows that, for various settings and in contrast to the existing mixture-based approaches, both extended models perform well. Finally, a real data set based on French auto-mobile policies is used to illustrate the application of the proposed extensions.  相似文献   

20.
In this paper, we extend to a multivariate setting the bivariate model A introduced by Jin and Ren in 2014 (Recursions and fast Fourier transforms for a new bivariate aggregate claims model, Scandinavian Actuarial Journal 8) to model insurance aggregate claims in the case when different types of claims simultaneously affect an insurance portfolio. We obtain an exact recursive formula for the probability function of the multivariate compound distribution corresponding to this model under the assumption that the conditional multivariate counting distribution (conditioned by the total number of claims) is multinomial. Our formula extends the corresponding one from Jin and Ren.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号