首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
High-strength woven fabrics and polymers are ideal materials for use in structural and aerospace systems. It is very important to characterize their mechanical properties under extreme conditions such as varying temperatures, impact and ballistic loadings. In this present work, the effects of strain rate and temperature on the tensile properties of basalt fiber reinforced polymer (BFRP) were investigated. These composites were fabricated using vacuum assisted resin infusion (VARI). Dynamic tensile tests of BFRP coupons were conducted at strain rates ranging from 19 to 133 s−1 using a servo-hydraulic high-rate testing system. Additionally, effect of temperature ranging from −25 to 100 °C was studied at the strain rate of 19 s−1. The failure behaviors of BFRP were recorded by a Phantom v7.3 high speed camera and analyzed using digital image correlation (DIC). The results showed that tensile strength, toughness and maximum strain increased 45.5%, 17.3% and 12.9%, respectively, as strain rate increased from 19 to 133 s−1. Moreover, tensile strength was independent of varying temperature up to 50 °C but decreased at 100 °C, which may be caused by the softening of epoxy matrix and weakening of interfaces between fibers and matrix when the glass transition temperature was exceeded.  相似文献   

3.
The present paper is concerned with the plasticity of a polyvinylidene fluoride (PVDF) in tension. Strain rate strongly influences the plastic behaviour, but the variation of the elastic properties is almost negligible within the range of strain rates considered in the study (from 1.6 × 10−4 s−1 up to 1.6 × 10−1 s−1). In particular, the yield stress and the ultimate tensile strength are strongly rate-dependent. A one-dimensional elasto-viscoplastic phenomenological model is proposed and analysed. Despite the nonlinearity of the model equations, only one tensile test performed with variable strain rate is sufficient to identify all material parameters. Model predictions are compared with experiments showing good agreement.  相似文献   

4.
The mechanical properties of composite modified double base (CMDB) propellant significantly depend on the strain rate. In particular, the yield stress increases dramatically at higher strain rates. To study this behaviour, low, intermediate and high strain rate compression testing (1.7 × 10−4 to 4 × 103 s−1) of CMDB propellant at room temperature was conducted by using a universal testing machine, a hydraulic testing machine and a split Hopkinson pressure bar (SHPB) system, respectively. The yield stress was observed to increase bilinearly with the logarithm of strain rate, with a sharp increase in slope at a strain rate of 5 × 101 s−1, which was supported by dynamic mechanical analysis (DMA) testing. The Ree-Eyring model, involving two rate-activated processes, was employed to predict the yield behaviour of CMDB propellant over a wide range of strain rates. The predictions are in excellent agreement with the experimental data.  相似文献   

5.
The present study investigates the deformation behavior of Poly-Ether-Ether-Ketone (PEEK) at elevated temperatures and low strain rates through a combination of experiments and simulations. Uniaxial tension tests at elevated temperatures (293–543 K) and strain rates (8.3 × 10−3 to 3.3 × 10−1 s−1) were performed, and the temperature- and rate-dependencies of the deformation behavior and mechanism of PEEK were discussed in detail. The Erichsen test was performed at temperatures varying from 473 to 533 K and a fixed speed of 1 mm/s. Based on an investigation of numerous constitutive models, a phenomenological model called DSGZ was employed in ABAQUS/Explicit to characterize the deformation behavior of PEEK at elevated temperatures, and the deviation between experimental and simulation data was less than 10% at large deformations. Moreover, the simulation results accurately predicted the necking and cold drawing phenomena in the tension test as well as the deformation in the Erichsen test.  相似文献   

6.
The effects of strain rate and deformation temperature on the deformation behaviors of polyether-ether-ketone (PEEK) were studied by uniaxial tensile tests with the temperature range of 23–150 °C and strain rate of 0.01–1 s−1. The effects of deformation temperature and strain rate on the hot tensile deformation behavior and fracture characteristics were investigated by scanning electron microscope (SEM) and discussed in detail. SEM experimental results suggest that fracture morphology is not strain rate sensitive but temperature sensitive. Based on the tensile results, the Johnson-Cook and modified Johnson-Cook constitutive models were established for PEEK. Furthermore, a comparative study has been made on the accuracy and effectiveness of the developed models to predict the flow stress. The results show that the original Johnson-Cook model reflects the deformation behavior more accurately throughout the entire test temperature and strain rate range under uniaxial tensile conditions.  相似文献   

7.
Ultra-high molecular weight polyethylene (UHMWPE) fibre has great potential for strengthening structures against impact or blast loads. A quantitative characterization of the mechanical properties of UHMWPE fibres at varying strain rates is necessary to achieve reliable structural design. Quasi-static and high-speed tensile tests were performed to investigate the unidirectional tensile properties of UHMWPE fibre laminates over a wide range of strain rates from 0.0013 to 163.78 s−1. Quasi-static tensile tests of UHMWPE fibre laminates were conducted at thicknesses ranging from 1.76 mm to 5.19 mm. Weibull analysis was conducted to investigate the scatter of the test data. The failure mechanism and modes of the UHMWPE fibre laminates observed during the test are discussed. The test results indicate that the mechanical properties of the UHMWPE fibre laminate are not sensitive to thickness, whereas the strength and the modulus of elasticity increase with strain rate. It is concluded that the distinct failure modes at low and high strain rates partially contribute to the tensile strength of the UHMWPE fibre laminates. A series of empirical formulae for the dynamic increase factor (DIF) of the material strength and modulus of elasticity are also derived for better representation of the effect of strain rate on the mechanical properties of UHMWPE fibre laminates.  相似文献   

8.
The reactions between OH radicals and hydrogen halides (HCl, HBr, HI) have been studied between 298 and 460 K by using a discharge flow-electron paramagnetic resonance technique. The rate constants were found to be kHCl(298 K) = (7.9 ± 1.3) × 10−13 cm3 molecule−1 s−1 with a weak positive temperature dependence, kHBr (298-460 K) = (1.04 ± 0.2) × 10−11 cm3 molecule−1 s−1, and kHI(298 K) = (3.0 ± 0.3) × 10−11 cm3 molecule−1 s−1, respectively. The homogeneous nature of these reactions has been experimentally tested.  相似文献   

9.

Isothermal and dynamic differential scanning calorimetry (DSC) was exploited to study the curing behavior of diglycidyl ether bisphenol-A epoxy resin with various combining ratios of dicyandiamide (DICY) and nadic methyl anhydride (NMA). Curves of prepared samples indicated that the enthalpy of the reaction decreased with increasing the molar ratios (NMA/DICY) up to 40% after which an exothermic peak peculiar to the effect of anhydride appeared at a higher temperature. The curing behavior examination of the samples containing the aforementioned molar ratio of NMA/DICY (= 40%) was carried out using isothermal condition at different temperatures (130–145 °C) and dynamic condition DSC at various heating rates (2.5–20 °C min−1). Under the isothermal condition, by constructing a master curve, the values of activation energy (Ea) and pre-exponential factor (A) were calculated 89.3 kJ mol−1 and 1.2 × 10+9 s−1, respectively. The activation energy of the curing reactions in a dynamic mode was obtained 85.32 kJ mol−1 and 88.02 kJ mol−1 using Kissinger and Ozawa methods, respectively. Likewise, pre-exponential factors were also calculated 3.35 × 10+8 and 7.4 × 10 +8 s−1, respectively. The overall order of reaction for both conditions was found to be a value around 3.

  相似文献   

10.
This work deals with the study of temperature and time dependency of tensile properties of a PA 12-based polymer. The range of variation of parameters in experiments was linked to in-service conditions of components manufactured with this material (temperature interval from ?25 °C to 50 °C and average strain-rate magnitudes from 0.00028 s?1 to 9.4 s?1). For tests with different temperatures and low speed, an electro-mechanical machine, Zwick Z250, equipped with an incremental extensometer was used. To study the effect of strain rate at medium speeds, a servo-hydraulic system, Schenk PC63M, equipped with a strain-gauge extensometer was used, while at high speeds a servo-hydraulic machine, Instron VHS 160/20, equipped with a high-speed camera for strain evaluation by digital image correlation was employed. The changes of the rate of deformation with strain as well as elastic modulus variation with strain were studied. An increase in the elastic modulus and yield strength was observed with a drop in temperature and an increase in the strain-rate, temperature having a stronger influence on the variation of mechanical properties. The collected data was assembled in an elasto-plastic material model for finite-element simulations capable of rendering temperature- and strain-rate-dependency. The model was implemented in the commercial software Abaqus, yielding accurate results for all tests.  相似文献   

11.
The reaction of solvated electrons with baicalin in N2-saturated ethanol has been studied by pulse radiolysis. The results show that a solvated electron can add to baicalin and generate a baicalin radical anion with a maximum UV absorbance peak at 360 nm. Its molar extinction coefficient at this wavelength is 1.3×104 M−1 cm−1. The rate constant for the build-up of the baicalin radical anion is 1.3(±0.4)×1010 M−1 s−1. Decay of the radical anion is induced by a proton transfer reaction and a recombination reaction, which involves a pseudo-first-order reaction with rate constant 2.6(±0.4)×103 s−1 and a second-order reaction with rate constant 1.3(±0.2)×109 M−1 s−1. The effect of acetaldehyde on the decay of the baicalin radical anion was also investigated. Electron transfer between the baicalin radical anion and acetaldehyde was not observed, probably due to the low rate of electron transfer between the baicalin radical anion and acetaldehyde. Reactivity of the rutin, quercetin, baicalin and ethyl acrylate radical anions are also compared.  相似文献   

12.
The transport of copper(II) through a supported liquid membrane using MOC-55 TD (oxime derivative), dissolved in Iberfluid, as a carrier has been studied. A physico-chemical model is derived to describe the transport mechanism which consists of: diffusion process through the feed aqueous diffusion layer, fast interfacial chemical reaction and diffusion through the membrane. The experimental data can be explained by mathematical equations describing the rate of transport. The mass transfer coefficient was calculated from the described model as 2.8×10−3 cm s−1, the thickness of the aqueous boundary layer as 2.6×10−3 cm−1 and the membrane diffusion coefficient of the copper-containing species as 1.2×10−8 cm2 s−1.  相似文献   

13.
Tetrahydrofuran (THF) is a strong aprotic solvent, commonly used in the pharmaceuticals industry due to its broad solvency for both polar and non-polar compounds. THF and water form a homogeneous azeotrope at 5.3 wt.% water thus simple distillation is not feasible to dehydrate THF below this concentration. Pervaporation offers a solution since it is not governed by vapour–liquid equilibria. However many polymer-based pervaporation membranes are cast utilizing THF as the casting solvent and so these membranes have a tendency to swell excessively in its presence. This results in poor separation performance and poor long-term stability and thus renders these membranes unsuitable for THF dehydration.In this study, a new membrane available from CM Celfa, CMC-VP-31 has been tested for the dehydration of THF. The membrane shows excellent performance when dehydrating THF with a flux of over 4 kg m−2 h−1 when dehydrating THF containing 10 wt.% water at 55 °C dropping to 0.12 kg m−2 h−1 at a water content of 0.3 wt.%. The permeances of water and THF in the membrane were calculated to be 11.76 × 10−6 and 7.36 × 10−8 mol m−2 s−1 Pa−1, respectively, at 25 °C and found to decrease in the membrane with increasing temperature to values of 6.71 × 10−6 and 1.63 × 10−8 mol m−2 s−1 Pa−1 at 55 °C. The flux and separation factor were both found to increase with an increase in temperature thus favouring the operation of CMC-VP-31 at high temperatures to optimize separation performance.  相似文献   

14.
Fourier transform infrared (FTIR) smog chamber techniques were used to investigate the atmospheric chemistry of the isotopologues of methane. Relative rate measurements were performed to determine the kinetics of the reaction of the isotopologues of methane with OH radicals in cm3 molecule−1 s−1 units: k(CH3D + OH) = (5.19 ± 0.90) × 10−15, k(CH2D2 + OH) = (4.11 ± 0.74) × 10−15, k(CHD3 + OH) = (2.14 ± 0.43) × 10−15, and k(CD4 + OH) = (1.17 ± 0.19) × 10−15 in 700 Torr of air diluent at 296 ± 2 K. Using the determined OH rate coefficients, the atmospheric lifetimes for CH4–xDx (x = 1–4) were estimated to be 6.1, 7.7, 14.8, and 27.0 years, respectively. The results are discussed in relation to previous measurements of these rate coefficients.  相似文献   

15.
Hot‐air drawing method has been applied to poly(ethylene terephthalate) (PET) fibers in order to investigate the effect of strain rate on their microstructure and mechanical properties and produce high‐performance PET fibers. The hot‐air drawing was carried out by blowing hot air controlled at a constant temperature against an as‐spun PET fiber connected to a weight. As the hot air blew against the fibers weighted variously at a flow rate of about 90 ℓ/min, the fibers elongated instantaneously at a strain rate in the range of 2.3–18.7 s−1. The strain rate in the hot‐air drawing increased with increasing drawing temperature and applied tension. When the hot‐air drawing was carried out at a drawing temperature of 220°C under an applied tension of 27.6 MPa, the strain rate was the highest value of 18.7 s−1. A draw ratio, birefringence, crystallite orientation factor, and mechanical properties increased as the strain rate increased. The fiber drawn at the highest stain rate had a birefringence of 0.231, degree of crystallinity of 44%, tensile modulus of 18 GPa, and dynamic storage modulus of 19 GPa at 25°C. The mechanical properties of fiber obtained had almost the same values as those of the zone‐annealed PET fiber reported previously. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1703–1713, 1999  相似文献   

16.

The sorption and diffusion behavior of cesium was studied to support the interpretation of the ongoing in-situ experiments in the Olkiluoto test site. The distribution coefficients of cesium in the Olkiluoto pegmatitic granite, veined gneiss and their main minerals were obtained by batch sorption experiments and the diffusion of cesium was studied in rock cubes. The results were modelled with PHREEQC and Comsol Multiphysics. The distribution coefficients of cesium were largest in biotite and veined gneiss. The effective diffusion coefficients of cesium from the diffusion model were 3 × 10−13 m2 s−1 for veined gneiss and 4 × 10−13 m2 s−1 for pegmatitic granite.

  相似文献   

17.
The extensional rheological properties of low density polyethylene (LDPE)/linear low density polyethylene (LLDPE) blend melts were measured using a melt spinning technique under temperatures ranging from 160 to 200 °C and die extrusion velocities varying from 9 to 36 mm/s. The results showed that the melt elongation stress decreased with a rise of temperature while it increased with increasing extensional strain rate and the LDPE weight fraction. The dependence of the melt elongation viscosity on temperature roughly obeyed the Arrhenius equation, it increased with increasing extensional strain rate and the LDPE weight fraction when the extensional strain rate was lower than 0.5 s−1, and it reached a maximum when the extensional strain rate was about 0.5 s−1, which can be attributed to the stress hardening effect.  相似文献   

18.
In this study, the kinetics and mechanism of UV/O3 synergistic oxidative digestion of dissolved organic phosphorus (DOP) were investigated, focusing on the ozone direct oxidation and hydroxyl radical oxidation parts of glufosinate and triphenyl phosphate (TPhP). The p-chlorobenzoic acid (p-CBA) was selected as the probe compound, and two kinds of reaction kinetic models were proposed by competitive kinetic method with Rct according to the different scale of rate constants of hydroxyl radical oxidation. Under the condition of weakly alkaline (pH = 9.0) and weakly acidic environment (pH = 5.0), the second-order rate constants of glufosinate and TPhP was determined indirectly to be ko3/glufosinate = (2.903 ± 0.247)M−1s−1 and ko3/TPhP = (3.307 ± 0.204) M−1s−1 by ozone direct oxidation, and k·OH/glufosinate = (1.257 ± 1.031) × 109 M−1s−1 and k·OH/TPhP = (7.120 × 108 ± 0.963) M−1s−1 by hydroxyl radical oxidation, respectively. The comparison of the contribution levels of the two parts to the digestion process showed that the contribution levels in the digestion of glufosinate and TPhP processes both the contribution of ·OH were higher than those of ozone, 86.3% and 72.6%, respectively.  相似文献   

19.

Hexagonal boron nitride (h-BN) was neutron damaged at an integral flux of 2.40 × 1012 n cm−2 s−1 for 1, 2, 3 and 4 h. The h-BN samples undergo a transition from sp2 to sp3 hybridization as a consequence of the neutron induced damage with the formation of cubic boron nitride (c-BN) spots, as suggested both by FT–IR and Raman spectroscopy. In addition to c-BN, also a certain degree of amorphization is achieved by h-BN already at the lowest neutron fluence of 8.64 × 1015 n cm−2 as clearly evidenced by Raman spectroscopy. The Wigner or stored energy to the radiation-damaged h-BN samples was studied by DSC and also in this case there was a clear evidence that the neutron damage was partly irreversible and insensitive to the thermal annealing up to 630 °C. Electron spin resonance (ESR) was employed to further study the structural defects induced by the neutron bombardment of h-BN. Two kinds of paramagnetic defective structures centered on 11B atoms were identified.

  相似文献   

20.
The kinetic curves for oxidation of dopamine hydrochloride in aqueous solution in the presence of ammonium peroxydisulfate were obtained by UV–vis spectroscopy and potentiometry. It was shown that the reaction follows the first-order kinetic equation and proceeds at a low rate. The values for the activation energy and the preexponential factor were determined as 75 kJ × mol−1 and 4 × 108 s−1, respectively. The activation entropy was found having a negative value of −89 J × mol−1 × K−1. The first reaction order, the low preexponential factor and the negative activation entropy value for the reaction between the 2-(3,4-dihydroxyphenyl)ethanammonium cation and the peroxydisulfate anion were explained by the formation of ionic associates, which slowly enter into the internal redox reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号