首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The aim of the paper is to examine the behavior of insurance surplus over time for a portfolio of homogeneous life policies. We distinguish between stochastic and accounting surpluses and derive their first two moments. A recursive formula is proposed for calculating the distribution function of the accounting surplus. We then examine the probability that the accounting surplus becomes negative in a given insurance year. Numerical examples illustrate the results for portfolios of temporary and endowment life policies assuming a conditional AR(1) process for the rates of return.  相似文献   

2.
This paper develops a novel importance sampling algorithm for estimating the probability of large portfolio losses in the conditional independence framework. We apply exponential tilts to (i) the distribution of the natural sufficient statistics of the systematic risk factors and (ii) conditional default probabilities, given the simulated values of the systematic risk factors, and select parameter values by minimizing the Kullback–Leibler divergence of the resulting parametric family from the ideal (zero-variance) importance density. Optimal parameter values are shown to satisfy intuitive moment-matching conditions, and the asymptotic behaviour of large portfolios is used to approximate the requisite moments. In a sense we generalize the algorithm of Glasserman and Li (2005) so that it can be applied in a wider variety of models. We show how to implement our algorithm in the t copula model and compare its performance there to the algorithm developed by Chan and Kroese (2010). We find that our algorithm requires substantially less computational time (especially for large portfolios) but is slightly less accurate. Our algorithm can also be used to estimate more general risk measures, such as conditional tail expectations, whereas Chan and Kroese (2010) is specifically designed to estimate loss probabilities.  相似文献   

3.
Stochastic dominance relations are well studied in statistics, decision theory and economics. Recently, there has been significant interest in introducing dominance relations into stochastic optimization problems as constraints. In the discrete case, stochastic optimization models involving second order stochastic dominance constraints can be solved by linear programming. However, problems involving first order stochastic dominance constraints are potentially hard due to the non-convexity of the associated feasible regions. In this paper we consider a mixed 0–1 linear programming formulation of a discrete first order constrained optimization model and present a relaxation based on second order constraints. We derive some valid inequalities and restrictions by employing the probabilistic structure of the problem. We also generate cuts that are valid inequalities for the disjunctive relaxations arising from the underlying combinatorial structure of the problem by applying the lift-and-project procedure. We describe three heuristic algorithms to construct feasible solutions, based on conditional second order constraints, variable fixing, and conditional value at risk. Finally, we present numerical results for several instances of a real world portfolio optimization problem. This research was supported by the NSF awards DMS-0603728 and DMI-0354678.  相似文献   

4.
In this paper, we examine a joint lot-sizing and process investment problem with random yield and backorders. We allow for inspection and develop stochastic models which provide the optimal inspection and lot-sizing policy as well as the optimal process investment for variance reduction. The process quality loss profile around the target is captured via a modification of the Reflected Normal loss function. We conduct numerical experiments assuming that the proportion of defectives follows a Uniform distribution while the process quality characteristic follows either a Normal or Uniform distribution. We also develop closed-form solutions that depend on at most the first two moments of any general probability distribution of defective units and which allow us to examine the nature of optimal policies. We demonstrate via numerical experiments the value of our integrated approach for jointly determining optimal inventory, inspection, and investment policies. Overall, our models and analyses provide some interesting insights into this reasonably complex inventory-quality problem and open up several avenues for future work in this area.  相似文献   

5.
We discuss stochastic, continuous-time models of serial multilevel production/inventory systems using quasi-variational inequalities. The value functions are characterized as maximum solutions of suitable equivalent problems. Then, we show how to construct optimal centralized policies and, if possible, decentralized policies. Finally, we present some numerical examples for the deterministic case.The work of the second author was supported by the National Science Foundation under Grant No. DMS-87-02236.  相似文献   

6.
Discrete-time GI/Geo/1 queue with multiple working vacations   总被引:2,自引:0,他引:2  
Consider the discrete time GI/Geo/1 queue with working vacations under EAS and LAS schemes. The server takes the original work at the lower rate rather than completely stopping during the vacation period. Using the matrix-geometric solution method, we obtain the steady-state distribution of the number of customers in the system and present the stochastic decomposition property of the queue length. Furthermore, we find and verify the closed property of conditional probability for negative binomial distributions. Using such property, we obtain the specific expression for the steady-state distribution of the waiting time and explain its two conditional stochastic decomposition structures. Finally, two special models are presented.   相似文献   

7.
Stochastic epidemic models describe the dynamics of an epidemic as a disease spreads through a population. Typically, only a fraction of cases are observed at a set of discrete times. The absence of complete information about the time evolution of an epidemic gives rise to a complicated latent variable problem in which the state space size of the epidemic grows large as the population size increases. This makes analytically integrating over the missing data infeasible for populations of even moderate size. We present a data augmentation Markov chain Monte Carlo (MCMC) framework for Bayesian estimation of stochastic epidemic model parameters, in which measurements are augmented with subject-level disease histories. In our MCMC algorithm, we propose each new subject-level path, conditional on the data, using a time-inhomogenous continuous-time Markov process with rates determined by the infection histories of other individuals. The method is general, and may be applied to a broad class of epidemic models with only minimal modifications to the model dynamics and/or emission distribution. We present our algorithm in the context of multiple stochastic epidemic models in which the data are binomially sampled prevalence counts, and apply our method to data from an outbreak of influenza in a British boarding school. Supplementary material for this article is available online.  相似文献   

8.
Important performance measures for many Markov renewal processes are the counts of the exits from each state. We present solutions for the conditional first, second, and covariance moments of the state exiting counting processes for a Markov renewal process, and solutions for the unconditional equilibrium versions of the moments. We demonstrate the relationship between the conditional first moments for the state exiting and the state entering counting processes. For analytical and illustrative purposes, we concentrate on the two state case. Two asymptotic expansions for the moment functions are proposed and evaluated both analytically and empirically. The two approximations are shown to be competitive in terms of absolute relative error, but the second approximation has a simpler analytical form which is useful in analyzing more complex stochastic processes having an underlying MRP structure.  相似文献   

9.
In this paper, we develop integrated inventory inspection models with and without replacement of nonconforming items. Inspection policies include no inspection, sampling inspection, and 100% inspection. We consider a buyer who places an order from a supplier when his inventory level drops to a certain point, due to demand which is stochastic in nature. When a lot is received, the buyer uses some type of inspection policy. The fraction nonconforming is assumed to be a random variable following a beta distribution. The order quantity, reorder point and the inspection policy are decision variables. In the inspection policy involving determining sampling plan parameters, constraints on the buyer and manufacturer risks is set in order to obtain a fair plan for both parties. A solution procedure for determining the operating policies for inventory and inspection consisting of order quantity, sample size, and acceptance number is proposed. Numerical examples are presented to conduct a sensitivity analysis for important model parameters and to illustrate important issues about the developed models.  相似文献   

10.
We consider optimization problems for minimizing conditional value-at-risk (CVaR) from a computational point of view, with an emphasis on financial applications. As a general solution approach, we suggest to reformulate these CVaR optimization problems as two-stage recourse problems of stochastic programming. Specializing the L-shaped method leads to a new algorithm for minimizing conditional value-at-risk. We implemented the algorithm as the solver CVaRMin. For illustrating the performance of this algorithm, we present some comparative computational results with two kinds of test problems. Firstly, we consider portfolio optimization problems with 5 random variables. Such problems involving conditional value at risk play an important role in financial risk management. Therefore, besides testing the performance of the proposed algorithm, we also present computational results of interest in finance. Secondly, with the explicit aim of testing algorithm performance, we also present comparative computational results with randomly generated test problems involving 50 random variables. In all our tests, the experimental solver, based on the new approach, outperformed by at least one order of magnitude all general-purpose solvers, with an accuracy of solution being in the same range as that with the LP solvers. János Mayer: Financial support by the national center of competence in research "Financial Valuation and Risk Management" is gratefully acknowledged. The national centers in research are managed by the Swiss National Science Foundation on behalf of the federal authorities.  相似文献   

11.
No-arbitrage interest rate models are designed to be consistent with the current term structure of interest rates. The diffusion of the interest rates is often approximated with a tree, in which the scenario-dependent fair price of any security is calculated as the present value of the risk-neutral expectation by backward induction. To use this tree in a portfolio optimization context it is necessary to account for the so-called “market price of risk”. In this paper we present a method to change the conditional probabilities in the Black–Derman–Toy model to the physical (or real) measure, including the market price of risk, and explore the economic implications for expected spot rates and for expected bond returns.  相似文献   

12.
In this paper we compare several service disciplines commonly used in polling systems. We present a sample path comparison which allows us to evaluate the efficiency of the different policies based on thetotal amount of work found in the systemat any time. The analysis is carried out for a large variety of polling schemes under fairly general conditions and can be used to construct a hierarchy of the different service schemes.  相似文献   

13.
Gaussian graphical models (GGMs) are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of GGMs extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous subgroups. In this article, we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable GGMs. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo (MCMC) algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the MCMC algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which MCMC algorithms are too slow to be practically useful.  相似文献   

14.
In this paper we show how one can get stochastic solutions of Stochastic Multi-objective Problem (SMOP) using goal programming models. In literature it is well known that one can reduce a SMOP to deterministic equivalent problems and reduce the analysis of a stochastic problem to a collection of deterministic problems. The first sections of this paper will be devoted to the introduction of deterministic equivalent problems when the feasible set is a random set and we show how to solve them using goal programming technique. In the second part we try to go more in depth on notion of SMOP solution and we suppose that it has to be a random variable. We will present stochastic goal programming model for finding stochastic solutions of SMOP. Our approach requires more computational time than the one based on deterministic equivalent problems due to the fact that several optimization programs (which depend on the number of experiments to be run) needed to be solved. On the other hand, since in our approach we suppose that a SMOP solution is a random variable, according to the Central Limit Theorem the larger will be the sample size and the more precise will be the estimation of the statistical moments of a SMOP solution. The developed model will be illustrated through numerical examples.  相似文献   

15.
A general portfolio of survivorship life insurance contracts is studied in a stochastic rate of return environment with a dependent mortality model. Two methods are used to derive the first two moments of the prospective loss random variable. The first one is based on the individual loss random variables while the second one studies annual stochastic cash flows. The distribution function of the present value of future losses at a given valuation time is derived. For illustrative purposes, an AR(1) process is used to model the stochastic rates of return, and the future lifetimes of a couple are assumed to follow a copula model. The effects of the mortality dependence, the portfolio size and the policy type, as well as the impact of investment strategies on the riskiness of portfolios of survivorship life insurance policies are analyzed by means of moments and probability distributions.  相似文献   

16.
We present an exact formula for moments and cumulants of several real compound Wishart matrices in terms of an Euler characteristic expansion, similar to the genus expansion for complex random matrices. We consider their asymptotic values in the large matrix limit: as in a genus expansion, the terms which survive in the large matrix limit are those with the greatest Euler characteristic, that is, either spheres or collections of spheres. This topological construction motivates an algebraic expression for the moments and cumulants in terms of the symmetric group. We examine the combinatorial properties distinguishing the leading order terms. By considering higher cumulants, we give a central-limit-type theorem for the asymptotic distribution around the expected value.  相似文献   

17.
In this paper, we consider some optimal harvesting policies for single population models, in which the harvest effort and the intrinsic growth rate are disturbed by environment noises. We choose the maximum sustainable yield and the maximum retained profits as two management objectives, and obtain the optimal harvesting policies, respectively. For the two objectives, we give the optimal harvest effort that maximizes the sustainable yield (or retained profits), the maximum of expectation of sustainable yield (or retained profits) and the corresponding variance. Their explicit expressions are determined by the coefficients of equation and the disturbance intensity.  相似文献   

18.
Restricted to certain classes of discrete life distributions, and based on moments, conditional binomial moments, order statistics, spacing or record values, characterizations of geometric distributions are given.This project is supported by the National Natural Science Foundation of China Grant No. 1880492.  相似文献   

19.
The evolution of a closed discrete-time homogeneous Markov system (HMS) is determined by the evolution of its state sizes in time. In order to examine the variability of the state sizes, their moments are evaluated for any time point, and recursive formulae for their computation are derived. As a consequence the asymptotic values of the moments for a convergent HMS can be evaluated. The respective recursive formula for a HMS with periodic transition matrix is given. The p.d.f.’s of the state sizes follow directly by means of the moments. The theoretical results are illustrated by a numerical example. This research was partially supported by the State Scholarships Foundation of Greece.  相似文献   

20.
A method is developed for approximating the properties of the state of a linear dynamic system driven by a broad class of non-Gaussian noise, namely, by polynomials of filtered Gaussian processes. The method involves four steps. First, the mean and correlation functions of the state of the system are calculated from those of the input noise. Second, higher order moments of the state are calculated based on Itô’s formula for continuous semimartingales. It is shown that equations governing these moments are closed, so that moment of any order of the state can be calculated exactly. Third, a conceptually simple technique, which resembles the Galerkin method for solving differential equations, is proposed for constructing approximations for the marginal distribution of the state from its moments. Fourth, translation models are calibrated to representations of the marginal distributions of the state as well as its second moment properties. The resulting models can then be utilized to estimate properties of the state, such as the mean rate at which the state exits a safe set. The implementation of the proposed method is demonstrated by numerous examples, including the turbulence-induced random vibration of a flexible plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号