首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we consider the time-consistent reinsurance–investment strategy under the mean–variance criterion for an insurer whose surplus process is described by a Brownian motion with drift. The insurer can transfer part of the risk to a reinsurer via proportional reinsurance or acquire new business. Moreover, stochastic interest rate and inflation risks are taken into account. To reduce the two kinds of risks, not only a risk-free asset and a risky asset, but also a zero-coupon bond and Treasury Inflation Protected Securities (TIPS) are available to invest in for the insurer. Applying stochastic control theory, we provide and prove a verification theorem and establish the corresponding extended Hamilton–Jacobi–Bellman (HJB) equation. By solving the extended HJB equation, we derive the time-consistent reinsurance–investment strategy as well as the corresponding value function for the mean–variance problem, explicitly. Furthermore, we formulate a precommitment mean–variance problem and obtain the corresponding time-inconsistent strategy to compare with the time-consistent strategy. Finally, numerical simulations are presented to illustrate the effects of model parameters on the time-consistent strategy.  相似文献   

2.
In this work we investigate the optimal proportional reinsurance-investment strategy of an insurance company which wishes to maximize the expected exponential utility of its terminal wealth in a finite time horizon. Our goal is to extend the classical Cramér–Lundberg model introducing a stochastic factor which affects the intensity of the claims arrival process, described by a Cox process, as well as the insurance and reinsurance premia. The financial market is supposed not influenced by the stochastic factor, hence it is independent on the insurance market. Using the classical stochastic control approach based on the Hamilton–Jacobi–Bellman equation we characterize the optimal strategy and provide a verification result for the value function via classical solutions to two backward partial differential equations. Existence and uniqueness of these solutions are discussed. Results under various premium calculation principles are illustrated and a new premium calculation rule is proposed in order to get more realistic strategies and to better fit our stochastic factor model. Finally, numerical simulations are performed to obtain sensitivity analyses.  相似文献   

3.
Optimal investment and reinsurance of an insurer with model uncertainty   总被引:1,自引:0,他引:1  
We introduce a novel approach to optimal investment–reinsurance problems of an insurance company facing model uncertainty via a game theoretic approach. The insurance company invests in a capital market index whose dynamics follow a geometric Brownian motion. The risk process of the company is governed by either a compound Poisson process or its diffusion approximation. The company can also transfer a certain proportion of the insurance risk to a reinsurance company by purchasing reinsurance. The optimal investment–reinsurance problems with model uncertainty are formulated as two-player, zero-sum, stochastic differential games between the insurance company and the market. We provide verification theorems for the Hamilton–Jacobi–Bellman–Isaacs (HJBI) solutions to the optimal investment–reinsurance problems and derive closed-form solutions to the problems.  相似文献   

4.
This paper studies the robust optimal reinsurance and investment problem for an ambiguity averse insurer (abbr. AAI). The AAI sells insurance contracts and has access to proportional reinsurance business. The AAI can invest in a financial market consisting of four assets: one risk-free asset, one bond, one inflation protected bond and one stock, and has different levels of ambiguity aversions towards the risks. The goal of the AAI is to seek the robust optimal reinsurance and investment strategies under the worst case scenario. Here, the nominal interest rate is characterized by the Vasicek model; the inflation index is introduced according to the Fisher’s equation; and the stock price is driven by the Heston’s stochastic volatility model. The explicit forms of the robust optimal strategies and value function are derived by introducing an auxiliary robust optimal control problem and stochastic dynamic programming method. In the end of this paper, a detailed sensitivity analysis is presented to show the effects of market parameters on the robust optimal reinsurance policy, the robust optimal investment strategy and the utility loss when ignoring ambiguity.  相似文献   

5.
This paper investigates an optimal investment strategy of DC pension plan in a stochastic interest rate and stochastic volatility framework. We apply an affine model including the Cox–Ingersoll–Ross (CIR) model and the Vasicek mode to characterize the interest rate while the stock price is given by the Heston’s stochastic volatility (SV) model. The pension manager can invest in cash, bond and stock in the financial market. Thus, the wealth of the pension fund is influenced by the financial risks in the market and the stochastic contribution from the fund participant. The goal of the fund manager is, coping with the contribution rate, to maximize the expectation of the constant relative risk aversion (CRRA) utility of the terminal value of the pension fund over a guarantee which serves as an annuity after retirement. We first transform the problem into a single investment problem, then derive an explicit solution via the stochastic programming method. Finally, the numerical analysis is given to show the impact of financial parameters on the optimal strategies.  相似文献   

6.
This study examines optimal investment and reinsurance policies for an insurer with the classical surplus process. It assumes that the financial market is driven by a drifted Brownian motion with coefficients modulated by an external Markov process specified by the solution to a stochastic differential equation. The goal of the insurer is to maximize the expected terminal utility. This paper derives the Hamilton–Jacobi–Bellman (HJB) equation associated with the control problem using a dynamic programming method. When the insurer admits an exponential utility function, we prove that there exists a unique and smooth solution to the HJB equation. We derive the explicit optimal investment policy by solving the HJB equation. We can also find that the optimal reinsurance policy optimizes a deterministic function. We also obtain the upper bound for ruin probability in finite time for the insurer when the insurer adopts optimal policies.  相似文献   

7.
We consider the optimal reinsurance and investment problem in an unobservable Markov-modulated compound Poisson risk model, where the intensity and jump size distribution are not known but have to be inferred from the observations of claim arrivals. Using a recently developed result from filtering theory, we reduce the partially observable control problem to an equivalent problem with complete observations. Then using stochastic control theory, we get the closed form expressions of the optimal strategies which maximize the expected exponential utility of terminal wealth. In particular, we investigate the effect of the safety loading and the unobservable factors on the optimal reinsurance strategies. With the help of a generalized Hamilton–Jacobi–Bellman equation where the derivative is replaced by Clarke’s generalized gradient as in Bäuerle and Rieder (2007), we characterize the value function, which helps us verify that the strategies we constructed are optimal.  相似文献   

8.
The paper concerns a problem of optimal reinsurance and investment in order to minimizing the probability of ruin. In the whole paper, the cedent’s surplus is allowed to invest in a risk-free asset and a risky asset and the company’s risk is reduced through proportional reinsurance, while in addition the claim process is assumed to follow a Brownian motion with drift. By solving the corresponding Hamilton-Jacobi-Bellman equations, the optimal reinsurance-investment strategy is derived. The presented results generalize those by Taksar [1].  相似文献   

9.
假设保险公司的盈余过程和金融市场的资产价格过程均由可观测的连续时间马尔科夫链所调节, 以最大化终端财富的状态相依的期望指数效用为目标, 研究了保险公司的超额损失再保险-投资问题. 运用动态规划方法, 得到最优再保险-投资策略的解析解以及最优值函数的半解析式. 最后, 通过数值例子, 分析了模型各参数对最优值函数和最优策略的影响.  相似文献   

10.
In this paper, we consider the optimal investment and reinsurance from an insurer's point of view to maximize the adjustment coefficient. We obtain the explicit expressions for the optimal results in the diffusion approximation (D‐A) case as well as in the jump‐diffusion (J‐D) case. Furthermore, we derive a sharper bound on the ruin probability, from which we conclude that the case with investment is always better than the case without investment. Some numerical examples are presented to show that the ruin probability in the D‐A case sometimes underestimates the ruin probability in the J‐D case. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, the basic claim process is assumed to follow a Brownian motion with drift. In addition, the insurer is allowed to invest in a risk-free asset and n risky assets and to purchase proportional reinsurance. Under the constraint of no-shorting, we consider two optimization problems: the problem of maximizing the expected exponential utility of terminal wealth and the problem of minimizing the probability of ruin. By solving the corresponding Hamilton–Jacobi–Bellman equations, explicit expressions for their optimal value functions and the corresponding optimal strategies are obtained. In particular, when there is no risk-free interest rate, the results indicate that the optimal strategies, under maximizing the expected exponential utility and minimizing the probability of ruin, are equivalent for some special parameter. This validates Ferguson’s longstanding conjecture about the relation between the two problems.  相似文献   

12.
We discuss an optimal investment, consumption and insurance problem of a wage earner under inflation. Assume a wage earner investing in a real money account and three asset prices, namely: a real zero-coupon bond, the inflation-linked real money account and a risky share described by jump-diffusion processes. Using the theory of quadratic-exponential backward stochastic differential equation (BSDE) with jumps approach, we derive the optimal strategy for the two typical utilities (exponential and power) and the value function is characterized as a solution of BSDE with jumps. Finally, we derive the explicit solutions for the optimal investment in both cases of exponential and power utility functions for a diffusion case.  相似文献   

13.
This paper considers a consumption and investment decision problem with a higher interest rate for borrowing as well as the dividend rate. Wealth is divided into a riskless asset and risky asset with logrithmic Erownian motion price fluctuations. The stochastic control problem of maximizating expected utility from terminal wealth and consumption is studied. Equivalent conditions for optimality are obtained. By using duality methods ,the existence of optimal portfolio consumption is proved,and the explicit solutions leading to feedback formulae are derived for deteministic coefficients.  相似文献   

14.
In this paper, we study the upper bounds for ruin probabilities of an insurance company which invests its wealth in a stock and a bond. We assume that the interest rate of the bond is stochastic and it is described by a Cox-Ingersoll-Ross (CIR) model. For the stock price process, we consider both the case of constant volatility (driven by an O-U process) and the case of stochastic volatility (driven by a CIR model). In each case, under certain conditions, we obtain the minimal upper bound for ruin probability as well as the corresponding optimal investment strategy by a pure probabilistic method.  相似文献   

15.
We study optimal investment and proportional reinsurance strategy in the presence of inside information. The risk process is assumed to follow a compound Poisson process perturbed by a standard Brownian motion. The insurer is allowed to invest in a risk-free asset and a risky asset as well as to purchase proportional reinsurance. In addition, it has some extra information available from the beginning of the trading interval, thus introducing in this way inside information aspects to our model. We consider two optimization problems: the problem of maximizing the expected exponential utility of terminal wealth with and without inside information, respectively. By solving the corresponding Hamilton-Jacobi-Bellman equations, explicit expressions for their optimal value functions and the corresponding optimal strategies are obtained. Finally, we discuss the effects of parameters on the optimal strategy and the effect of the inside information by numerical simulations.  相似文献   

16.
本文对跳-扩散风险模型,在赔付进行比例再保险,以及盈余投资于无风险资产和风险资产的条件下,研究使得最终财富的指数期望效用最大的最优投资和比例再保险策略.得到最优投资策略和最优再保险策略,以及最大指数期望效用函数的显式表达式,发现最优策略和值函数都受到无风险利率的影响.最后通过数值计算,得到最优投资和比例再保险策略,以及值函数与模型各个参数之间的关系.  相似文献   

17.
站在保险公司管理者的角度, 考虑存在不动产项目投资机会时保险公司的再保险--投资策略问题. 假定保险公司可以投资于不动产项目、风险证券和无风险证券, 并通过比例再保险控制风险, 目标是最小化保险公司破产概率并求得相应最佳策略, 包括: 不动产项目投资时机、 再保险比例以及投资于风险证券的金额. 运用混合随机控制-最优停时方法, 得到最优值函数及最佳策略的显式解. 结果表明, 当且仅当其盈余资金多于某一水平(称为投资阈值)时保险公司投资于不动产项目. 进一步的数值算例分析表明: (a)~不动产项目投资的阈值主要受项目收益率影响而与投资金额无明显关系, 收益率越高则投资阈值越低; (b)~市场环境较好(牛市)时项目的投资阈值降低; 反之, 当市场环境较差(熊市)时投资阈值提高.  相似文献   

18.
针对传统套期保值模型只考虑套期保值资产在套期保值期末的风险及未能充分利用样本数据所提供的信息的问题,本文提出了一类同时考虑套期保值期内不同期限风险的全时段最优套期保值比率计算模型.全时段套期保值模型通过最小化套期保值资产在套期保值期内不同期限的风险将投资者面临的风险在整个套期保值期内稳定保持在一个较低的水平,并更充分的利用了资产历史价格样本数据所提供的信息.本文基于沪深300指数及其仿真股指期货的历史价格数据,对传统形式的三种套期保值模型与本文提出的三种全时段套期保值模型的套期保值效果进行了实证分析和比较,并使用GARCH模型比较分析了这些模型套期保值的动态效果,结果表明三种全时段模型的套期保值效果都要优于相应的传统模型,能有效地缓解提前终止套期保值时投资者所面临的风险.  相似文献   

19.
In this paper we study the optimal management of an aggregated pension fund of defined benefit type, in the presence of a stochastic interest rate. We suppose that the sponsor can invest in a savings account, in a risky stock and in a bond with the aim of minimizing deviations of the unfunded actuarial liability from zero along a finite time horizon. We solve the problem by means of optimal stochastic control techniques and analyze the influence on the optimal solution of some of the parameters involved in the model.  相似文献   

20.
In this paper, we consider the jump‐diffusion risk model with proportional reinsurance and stock price process following the constant elasticity of variance model. Compared with the geometric Brownian motion model, the advantage of the constant elasticity of variance model is that the volatility has correlation with the risky asset price, and thus, it can explain the empirical bias exhibited by the Black and Scholes model, such as volatility smile. Here, we study the optimal investment–reinsurance problem of maximizing the expected exponential utility of terminal wealth. By using techniques of stochastic control theory, we are able to derive the explicit expressions for the optimal strategy and value function. Numerical examples are presented to show the impact of model parameters on the optimal strategies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号