首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
在陆地上空气溶胶遥感中,地表多样性会导致地表反射率计算误差增加,降低地气解耦精度,进而影响气溶胶反演精度。多角度、多光谱和偏振观测数据的引入有利于解决地气解耦精度和气溶胶参数的提取精度受限的问题。基于多角度偏振辐射计(AMPR)航空多光谱遥感数据,结合气溶胶散射和地表偏振反射规律,提出了在1 640 nm波段对AMPR观测偏振反射率进行连续大气辐射校正,实现地气解耦的方法。在此基础上,构建了陆地上空气溶胶偏振反演算法。运算过程中使用665和865 nm波段观测数据进行气溶胶参数提取,使用1 640 nm波段观测数据结合提取的气溶胶参数进行大气偏振辐射校正,重新获取地表偏振反射率。在反演过程中引入迭代,逐步逼近大气与地表真实辐射值,实现地气解耦,并利用查找表的方法实现气溶胶光学厚度反演。通过AMPR在京津唐地区5个架次的航空观测实验数据对反演算法进行了验证,结果与地基CE318观测数据一致性较好,在气溶胶光学厚度小于0.5的情况下,反演平均误差为约0.03。  相似文献   

2.
为了提高斜程能见度的计算精度,提出了一种基于Fernald-PSO法求解气溶胶激光雷达比的方法.首先,以均匀层底部和顶部的大气消光系数相等为条件构建气溶胶激光雷达比和气溶胶消光系数边界值的方程.然后,再以激光雷达数据反演和AERONET网站观测的气溶胶光学厚度相等为条件构造另一参量方程.最后,采用Fernald-PSO法解方程组,用得到的参量反演气溶胶消光系数计算斜程能见度.采用激光雷达和AERONET数据对该方法进行验证,分析气溶胶激光雷达比对斜程能见度反演的影响.结果表明,同一信号气溶胶激光雷达比假设值与计算值相差越大,气溶胶消光系数和斜程能见度的相对误差绝对值也越大,最大误差分别为18.93%和19.90%.  相似文献   

3.
基于POLDER数据反演陆地上空气溶胶光学特性   总被引:4,自引:2,他引:2  
针对利用POLDER数据反演陆地上空气溶胶光学特性和地表反射率进行研究.POLDER探测器能够提供可见光到红外的地气系统反射太阳光的反射率和偏振反射率的多方向数据.发展了一种基于多角度的总反射率和偏振反射率联合反演气溶胶光学参数的算法,根据倍加累加法矢量辐射传输模式构建查找表,反演过程中还考虑了测量数据的云检测处理,气体吸收校正和平流层气溶胶校正,通过865 nm波段总反射率和偏振反射率的模拟计算值和实际测量值的对比实现局部区域的气溶胶光学特性参数和地表反射率分布图的同时反演.并用CNES提供的POLDER气溶胶产品对反演结果进行了验证,该方法能够得到气溶胶光学厚度、折射指数、粒子有效半径和地表反射率较合理的反演结果.  相似文献   

4.
为提高海洋气溶胶的反演精度,定量研究了气溶胶在可见近红外波段的多光谱偏振辐射特性。首先建立了合理的海洋气溶胶及海面模型,基于逐次散射法准确模拟了光在气溶胶中及大气—海洋交界面处的矢量辐射传输过程,接着从光谱角度定量分析了典型波段处的反射率和偏振反射率,在此基础上提出了海洋气溶胶偏振辐射的光谱分布模型,并用卫星数据对模型进行验证,最后研究了气溶胶光学厚度、观测角度、海水叶绿素a浓度和海面风速对气溶胶多光谱偏振辐射的影响。研究表明,在可见近红外波段不考虑大气吸收和耀斑效应时,气溶胶偏振辐射的光谱变化符合幂函数模型;在不同波段处,海洋气溶胶的偏振辐射受海水叶绿素a浓度和海面风速的影响不同;海洋气溶胶的多光谱偏振辐射信息有效体现了气溶胶的自身特性,且与反射率相比,偏振反射率随各因素的变化存在更明显的谱段差异性。因此,可以运用气溶胶的多光谱偏振信息反演海洋气溶胶参数,多光谱探测的加入对提高气溶胶反演精度具有重要意义。  相似文献   

5.
采用基于逐次散射法的矢量辐射传输模型,通过求解矢量辐射传输方程,分析了影响海面上空气溶胶光学参数反演的主要因素。根据海洋大气气溶胶模型,通过构建多参数的反射率和偏振反射率查找表,给出了用于海上气溶胶光学参数反演的查找表迭代查找法。利用自主研制的多角度航空偏振相机在渤海湾上空航拍的偏振辐射数据,反演获得了该海域550nm波段的气溶胶光学厚度和ngstrm波长指数,其均值分别为0.441和1.15。通过与布置在京津塘周边的多个地基CE318太阳辐射计同步观测数据进行的对比校验发现,两者间具有很好的一致性,说明反演方法针对海天背景的实际问题的考虑和处理过程切实可行。  相似文献   

6.
利用兰州大学大气科学学院半干旱气候变化教育部重点实验室(SACOL站)气溶胶地基观测资料订正出的地表反射率及构建的沙尘气溶胶模型,借助6S大气辐射传输模式,对Terra卫星上的中分辨率成像光谱仪(MODIS)的L1B多光谱资料,进行了沙尘气溶胶光学厚度的个例反演试验。结果表明,四种反演方案的沙尘气溶胶光学厚度的区域分布均比较合理,说明反演方法可行;考虑了波长指数,并用SACOL资料构建的气溶胶模型进行大气订正得出的地表反射率反演出的沙尘气溶胶光学厚度最接近实际测量值,误差为-7.3%。通过对反演过程中的误差进行数值试验检验,结果表明反演方法比较稳定。  相似文献   

7.
大气气溶胶是影响城市环境空气质量的重要因素,同时对人类健康具有重要影响。传统的气溶胶遥感反演方法多适用于海洋及植被等地表反射率较低的区域,对于城市等高亮地表区域,地表反射率较高且难以确定,气溶胶反演面临巨大挑战。针对该问题,提出一种新的地表反射率的确定方法,将下垫面划分为暗地表和亮地表两种类型,分别使用可见光与短波红外的线性关系和利用长时间序列MODIS表现反射率数据使用最小值合成技术构建先验数据集的方法,确定其地表反射率,然后基于辐射传输方程理论利用查找表方法,进行气溶胶光学厚度反演。选择下垫面复杂、空气污染问题严重的北京市作为研究区,应用MODIS数据进行气溶胶反演实验,最后使用北京站、香河站、北京CAMS站和北京RADI站4个AERONET气溶胶地基观测数据和MODIS气溶胶产品对反演结果进行对比验证。结果表明该算法气溶胶反演结果与地基观测数据具有较高的一致性(R2=0.902),能以较高精度实现城市等高反射率地区的气溶胶反演,反演精度与空间连续性上较MOD04有显著提高。  相似文献   

8.
一类水体的标准大气校正算法利用两个近红外通道(748和869 nm)的辐射比值选择气溶胶模型,然后外推估算各波长的气溶胶贡献,实现离水反射率的反演。两个近红外通道的辐射探测值的不确定性会直接影响反演精度。从数学形式上研究近红外通道测量误差在大气校正中的传递机制,通过敏感性试验分析不同光学厚度和气溶胶模型条件下离水反射率的反演误差分布。结果表明,两个近红外通道的测量误差组合情况对反演结果精度影响程度不同,同号时误差较小,异号时误差较大;气溶胶模型中的细粒子组分越多,反演的误差越大;光学厚度越大,反演误差也越大。  相似文献   

9.
大气模式与气溶胶模型对辐射传输计算的影响   总被引:1,自引:0,他引:1  
大气模式与气溶胶模型选择是影响定量遥感应用的辐射传输计算的重要因素。人们一般凭感性认识去进行选择,有一定随意性,对其带来的影响程度关注甚少。以太阳辐射计测量为依据,对大气模式与气溶胶模型选择方法作了研究,并利用经辐射定标过的光谱辐射计地面测量对辐射传输计算精度进行了验证。在昆明进行的试验表明,在0.50~0.68μm范围内,选择中纬度冬季大气模式和大陆型气溶胶,经辐射传输计算后得到的光谱辐射亮度与光谱辐射计测量结果一致性很好,差别在3.3%以内;变换大气模式对辐射传输计算产生明显影响,差别达10%左右;选择不同的气溶胶模型对辐射传输计算影响也很大,差别达11%左右。基于辐射计测量的大气模式与气溶胶模型选择避免了主观选择的不可靠性,有益于减少辐射传输计算或卫星遥感大气订正的误差。  相似文献   

10.
吴魁  王仙勇  孙洁  黄玉龙 《应用声学》2017,25(10):43-47
针对传统故障诊断方法中特征提取技术难度大、故障样本获取困难等问题,在深度学习计算框架下提出了一种半监督训练的故障检测方法,利用深度信念网络中的受限波茨曼机堆栈结构实现了数据高层特征的自动提取,结合支持向量数据描述方法实现了异常数据检测,只需利用正常工况的数据样本进行网络训练和模型拟合,无需故障样本数据,也无需人工干预进行信号特征提取,即能实现对故障数据进行的实时检测和判别。经采用标准轴承实验数据的三组故障数据进行验证,故障识别率达到100%,具有很强的工程应用价值。  相似文献   

11.
根据地面中子探测与宇宙线环境之间的关联性,在太阳活动平静期以地球静止环境业务卫星及全球各个中子探测站的探测数据构建数据集。基于极端梯度提升决策树(XGBoost)和人工神经网络建立了由地面中子探测数据反演宇宙线质子环境的模型。模型采用遗传算法求解模型的最优超参数并对神经网络的各个神经元参数进行训练,实现了宇宙线质子环境在太阳活动平静期的反演,模型训练的均方差MSE为0.499,对测试集的平均反演误差分别为26.9%,对比航天常用的辐射环境模型误差通常在200%以内,提高显著。同时使用包括支持向量回归、误差反向传播算法、长短期记忆在内的多种其他机器学习算法进行了对比,结果表明本文所建立的模型具有训练时间短、计算速度快、占用资源小的优点。  相似文献   

12.
针对基于多光谱数据有限光谱信息重建地表反射率光谱的病态求解难题,提出一种基于冠层辐射传输物理机理并充分考虑像元异质性的地表反射率光谱重建方法,该方法假设混合像元由植被和土壤两种地物类型组成,利用冠层辐射传输模型构造端元光谱查找表,进而通过组分比例因子估算实现基于多光谱图像的高光谱地表反射率模拟。以Landsat ETM+多光谱图像为例的地表反射率超光谱重建验证实验结果表明,模拟的反射率光谱能够较好的反映不同地物特征信息。进一步地,利用模拟的地表反射率拟合Landsat ETM+图像和MODIS图像,各波段模拟图像与实际观测图像之间具有较高的相关系数(Landsat: 0.90~0.99, MODIS: 0.74~0.85),进一步验证了该方法的可行性。  相似文献   

13.
气溶胶光学厚度(AOD)是气溶胶浓度和大气浊度的重要表征参数。通过遥感手段实现大气气溶胶光学厚度的反演是大气监测与治理过程中的重要方式,其中遥感反演AOD的重点和难点是如何选择适合卫星传感器成像特点的方法和符合研究区域的气溶胶类型。针对传统暗目标法无法直接应用于高分四号(GF-4)卫星多光谱遥感数据的问题,通过研究得出了GF-4卫星多光谱数据中红、蓝波段等效地表反射率的分布和两者之间的线性关系,结合AOD反演原理改进暗目标法使其适用于GF-4卫星多光谱遥感数据;分析6S辐射传输模型输入参数中气溶胶类型对AOD反演精度的影响,结果表明气溶胶类型是影响AOD高精度反演的关键要素之一;利用粒子群(PSO)聚类算法对京津冀地区气溶胶特性实测样本进行聚类分析,通过分析各个气溶胶类型聚类结果的占比和半衰期变化情况,最终确定聚类得到的C1、 C4型和6S模型内置的大陆型气溶胶类型进行京津冀地区的AOD反演。为了验证不同气溶胶类型AOD反演结果的精度,将反演结果与MODIS气溶胶产品和气溶胶自动观测网(AERONET)地基站点数据进行对比验证,通过相关系数、绝对误差等评价标准对不同气溶胶类型的适用性和特点进行评价。实验结果表明,以细粒子为主导的C4型气溶胶更满足京津冀地区夏秋两季的气溶胶特点,与AERONET地基数据的一致性较好,进一步证明了PSO聚类算法能够有效减小气溶胶类型的差异对AOD反演精度的影响。  相似文献   

14.
提出一种渐近辐射传输(ART)理论与离散纵标辐射传输法(DISORT)相结合的方法,用于反演雪光谱反照率。基于雪粒形状的二级科赫分形假设,利用不同卫星数据与ART理论的三种粒径反演方法反演研究区域的雪粒径,反演的雪粒径大小不同,但平均值均在50μm左右。基于雪粒球形假设,根据反演的雪粒径,基于DISORT模型计算波段为0.3~5.0μm的雪光谱反照率,同时基于ART理论计算波段为0.3~1.5μm的雪的黑空与白空光谱反照率。由两种辐射传输模型计算的0.3~1.5μm的雪光谱反照率差异较小,表明雪粒形状假设合理,利用两种辐射传输模型相结合的方法能够计算太阳光谱的雪反照率。考虑到研究区域内黑碳等吸光性杂质的影响,修正了DISORT模型计算的雪光谱反照率。研究区域靠近国境边缘的西伯利亚地区时,吸光性杂质对于雪光谱反照率影响很小;研究区域为东北工业地区时,吸光性杂质会明显降低可见光波段的雪光谱反照率。  相似文献   

15.
Xu H  Gu XF  Li ZQ  Li L  Chen XF 《光谱学与光谱分析》2011,31(10):2798-2803
水体大气校正问题是开展我国环境一号卫星水色遥感定量化应用的关键。针对环境卫星CCD相机的特点,以水气耦合的辐射传输模型构建大气校正参数查找表,研究以地面气象数据辅助的逐像元水体大气校正方法,实现水体离水反射率和遥感反射比的反演。以现场测量数据和MODIS数据为参考进行水体大气校正效果验证,研究发现CCD相机的反演结果在蓝、绿波段的精度较高而红、近红的反演结果系统偏大。研究结果还表明气溶胶模型是影响水体大气校正精度的重要因素。  相似文献   

16.
针对被动多轴差分吸收光谱技术(MAX-DOAS)反演痕量气体SO_2中吸收强度弱以及易受反演波段和大气气溶胶状态影响的问题,研究了基于地基MAX-DOAS的对流层SO_2垂直廓线及垂直柱浓度的反演方法。通过反演误差对比确定了SO_2的最佳反演波段(307~330 nm),并精确获取了差分斜柱浓度。鉴于大气中气溶胶状态是影响SO_2等痕量气体反演的重要因素,反演中采用两步反演方法:第一步通过测量O_4气体的差分斜柱浓度来反演气溶胶廓线;第二步将气溶胶廓线输入到辐射传输模型中,利用痕量气体浓度垂直反演算法获取对流层(0~4 km)中SO_2的垂直分布廓线和垂直柱浓度。将SO_2廓线在0~100 m的反演结果和地面点式仪器数据进行对比,结果发现两者的一致性较高。研究表明,基于MAX-DOAS反演对流层中SO_2的垂直分布及垂直柱浓度是一种有效的手段。  相似文献   

17.
陶东兴  赵慧洁  贾国瑞 《光学学报》2012,32(10):1001001-14
基于MODTRAN辐射传输模型,假设近红外波段地物反射率随波长线性变化,考虑程辐射的影响,发展了一种通过双查找表反演高光谱遥感数据水汽含量的方法。建立查找表过程中,使用三次样条插值方法对查找表水汽含量值加密以减少MODTRAN运行时间。使用两个查找表,通过逐步搜索法对高光谱遥感数据进行水汽反演,得到水汽含量分布图。结果显示,使用三次样条插值方法得到的辐亮度值与MODTRAN计算结果只有0.1%的误差。对两景机载可见光/红外成像光谱仪(AVIRIS)高光谱数据进行水汽反演,得到水汽含量分布图,并用其对辐亮度数据进行大气校正,得到反射率数据。水汽含量分布图变化平缓,无亮/暗点出现,反射率数据在水汽吸收波段的光谱曲线没有过/欠校正现象,这表明水汽反演方法有效。  相似文献   

18.
基于MODIS数据的杭州地区气溶胶光学厚度反演   总被引:1,自引:0,他引:1  
气溶胶类型在反演光学厚度时非常重要,采用待反演地区最合理的气溶胶类型可以极大地提高反演精度。结合中分辨率成像光谱仪(MODIS)的数据,提出一种确定气溶胶各组分体积百分比的数学模型,利用这种数学模型得到自定义的杭州地区气溶胶类型,结合改进的暗像元法并基于6S大气辐射传输模式可以反演得到气溶胶光学厚度。将反演结果与AERONET太阳光度计的气溶胶观测值进行对比,结果显示反演的相对误差绝对值在20%以内。采用6S大气辐射传输模式给出的标准气溶胶类型对杭州地区大气进行光学厚度反演,将反演结果和采用自定义气溶胶类型时的反演结果分别与太阳光度计的观测值进行对比,结果表明采用自定义的气溶胶类型时反演值的相对误差绝对值比采用标准气溶胶类型时反演值的相对误差绝对值要低3%以上。  相似文献   

19.
为了解气溶胶空间非均匀性对近红外辐射传输过程的影响,构造了典型非均匀气溶胶场,采用辐射传输模式球谐离散坐标法(SHDOM)模拟了对应情形下的漫射光强、偏振特性以及辐射通量密度,定量分析了将非均匀气溶胶场等效为均匀场造成的模拟误差。研究结果表明,气溶胶非均匀场对辐射传输过程影响显著,且它对漫射光偏振辐亮度的影响大于它对辐亮度的影响,其中气溶胶空间非均匀性造成的辐亮度及偏振辐亮度模拟误差分别可达9.8%和80%。气溶胶水平非均匀性主要影响漫射光辐亮度及偏振辐亮度模拟误差的空间分布特征,垂直不均匀性基本不改变漫射光模拟误差的空间分布特征,但它对辐射传输过程的影响明显大于水平不均匀性。随着气溶胶浓度的增加,气溶胶非均匀性造成的模拟误差整体降低。从量级上,气溶胶空间非均匀性对辐射通量密度的影响明显弱于漫射光辐亮度和偏振辐亮度,多数情形下,其模拟误差小于5%,且该误差随高度的变化呈特定分布特征。可为平面平行大气辐射传输模式适用范围的确定,气溶胶空间非均匀性导致的遥感误差的评估提供一定参考。  相似文献   

20.
多光谱影像的陕西大西沟矿区土壤重金属含量反演   总被引:1,自引:0,他引:1  
传统的以“点采样+实验室分析”为主的土壤重金属含量分析技术成本高、效率低下,而基于多光谱遥感的土壤重金属高精度定量反演中存在重金属含量影响因子的优化这一难题,以陕西大西沟矿区这类山区地形条件下的金属矿区为例,利用Landsat8/OLI多光谱卫星影像、DEM数据以及外业土壤采样分析数据,开展了矿区土壤重金属含量指示因子分析及定量反演研究。首先,考虑研究区地形地貌特点,设计了沿研究区地形特征线及其两侧坡面均匀分布的样点分布方案,采集了45个样本。并对45个样本的混合样中的8种重金属含量进行了兴趣度分析,根据含量超标程度及矿的类型选取了铜、铅、砷3种元素作为分析对象。其次,根据研究区土地利用现状及地形特点,提出了以Landsat8/OLI影像B2至B7波段光谱反射率、粘土矿物比(CMR)、改进归一化水体指数(MNDWI)、差异植被指数(DVI)等八种光谱指数、以及反映研究区地形坡度和坡向三类因子作为反映土壤重金属含量空间分布特征的侯选因子。进而,对上述三类侯选因子与样本中3种金属含量进行了最小二乘相关性分析。根据分析结果,引入了基于估算误差最小准则的金属含量估算模型--基于规则的M5模型树的分段线性估算模型。以上述三大类共17个指示因子作为模型的输入,利用80%的土壤样本分析数据作为模型的训练数据,经过M5模型树的构建、平滑和树枝修剪过程,建立了3种金属的反演模型实现了研究区中土壤中3种金属含量的估算。同时,基于均方根误差(RMSE)最小准则确定了以光谱因子为主的最利于反演的最佳指示因子集。最后,用随机选取的20%的检验样本对模型进行了反演精度分析,验证了该模型对铜、铅、砷3种金属含量的反演精度比普通的线性模型分别提高了27.3%,24.6%,20.9%,同时,铜、铅元素的可信度也有所提高。利用上述模型的反演结果实现了3种金属含量的空间分布制图,并将反演结果与1990年公布的国家土壤元素背景值进行了对比。此外,分析了研究区铜、铅、砷3种金属的空间分布规律,并利用野外调查结果进行了验证。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号