共查询到20条相似文献,搜索用时 0 毫秒
1.
基于半导体工艺器件仿真软件和Matlab编程,对光子探测概率(PDP)进行了建模和实验表征。进一步考虑器件表面二氧化硅薄膜的光透射性,可以准确预测单光子雪崩二极管(SPAD)的性能。将模拟结果与采用0.18μm标准双极-互补金属氧化物半导体-双重扩散金属氧化物半导体(BCD)工艺设计和加工的SPAD的结果进行比较。结果显示,PDP的预测结果与实验结果之间具有良好的一致性,平均误差为1.72%。该模型可以减少商用器件仿真软件中存在的不收敛问题,极大减少了开发SPAD器件新结构所需的时间和成本。 相似文献
2.
3.
雪崩光电二极管单光子探测器是一种具有超高灵敏度的光电探测器件,在远距离激光测距、激光成像和量子通信等领域有非常重要的应用.然而,由于雪崩光电二极管单光子探测器的雪崩点对工作温度高度敏感,因此在外场环境下工作时容易出现增益波动,继而导致单光子探测器输出信号的延时发生漂移,严重降低了探测器的时间稳定性.本文发展了一种稳定输出延时的方法,采用嵌入式系统控制雪崩光电二极管,使其处于恒定温度,并实时补偿由环境温度引起的延时漂移,实现了雪崩光电二极管单光子探测器的高时间稳定性探测.实验中,环境温度从16 ℃变化到36 ℃,雪崩光电二极管的工作温度稳定在15 ℃,经过延时补偿,雪崩光电二极管单光子探测器输出延时漂移小于±1 ps,时间稳定度达到0.15 ps@100 s.这项工作有望为全天候野外条件和空间极端条件下的高精度单光子探测应用提供有效的解决方法. 相似文献
4.
基于0.18μm BCD工艺实现了一种高灵敏度、低暗计数噪声的近红外单光子直接飞行时间(dTOF)探测器。集成的单光子雪崩二极管(SPAD)探测器件采用新型的高压p阱/n+埋层作为深结雪崩倍增区的结构,显著提高了对近红外光子的探测概率;采用低掺杂的外延层作为虚拟保护环,有效减小了器件暗计数噪声。dTOF探测器读出电路采用三步式混合结构的时间数字转换器(TDC),获得了高时间分辨率和大动态范围。测试结果表明,SPAD器件在5 V过偏压下的光子探测概率(PDP)峰值达到45%,在905 nm近红外波长处的PDP大于7.6%,暗计数率(DCR)小于200 Hz。读出电路实现了130 ps的高时间分辨率和258 ns的动态范围,差分非线性度(DNL)和积分非线性度(INL)均小于±1 LSB(1 LSB=130 ps)。该dTOF探测器具有人眼安全阈值高、灵敏度高、噪声低和线性度好的优点,可应用于低成本、高精度的激光雷达测距系统。 相似文献
5.
高探测效率CMOS单光子雪崩二极管器件 总被引:1,自引:0,他引:1
基于标准0.35μm CMOS工艺设计了一种单光子雪崩二极管器件.采用p+n阱型二极管结构,同时引进保护环与深n阱结构以提高单光子雪崩二极管性能;研究了扩散n阱保护环宽度对雪崩击穿特性的影响;对器件的电场分布、击穿特性、光子探测效率、频率响应等特性进行了分析.仿真结果表明:所设计的单光子雪崩二极管器件结构直径为10μm,扩散n阱保护环宽度为1μm时,雪崩击穿电压为13.2 V,3 dB带宽可达1.6 GHz;过偏压为1 V、2 V时最大探测效率分别高达52%和55%;在波长500~800 nm之间器件响应度较好,波长为680 nm时单位响应度峰值高达0.45 A/W. 相似文献
6.
基于0.18μm CMOS工艺技术,制作了单光子雪崩二极管,可对650~950nm波段的微弱光进行有效探测.该器件采用P~+/N阱结构,P~+层深度较深,以提高对长光波的光子探测效率与响应度;采用低掺杂深N阱增大耗尽层厚度,可以提高探测灵敏度;深N阱与衬底形成的PN结可有效隔离衬底,降低衬底噪声;采用P阱保护环结构以预防过早边缘击穿现象.通过理论分析确定器件的基本结构参数及工艺参数,并对器件性能进行优化设计.实验结果表明,单光子雪崩二极管的窗口直径为10μm,器件的反向击穿电压为18.4V左右.用光强为0.001 W/cm~2的光照射,650nm处达到0.495A/W的响应度峰值;在2V的过偏压下,650~950nm波段范围内光子探测效率均高于30%,随着反向偏压的适当增大,探测效率有所提升. 相似文献
7.
基于180nm标准CMOS工艺,设计了一种能够有效提高光子探测效率的双电荷层结构的单光子雪崩二极管.该器件结构采用P电荷层和逆行掺杂的深N阱形成PN结,选取不同的P电荷层掺杂浓度,对击穿电压进行优化,当P电荷层浓度为1×1018cm-3时,击穿电压为17.8V,电场强度为5.26×105 V/cm.进一步研究发现N电荷层的位置会影响漂移电流密度和扩散电流密度.当在深N阱与N隔离层交界处掺杂形成N电荷层,即N电荷层掺杂峰值距离器件表面为2.5μm时,器件性能最优.通过Silvaco TCAD仿真分析得到:在过偏压1V下,波长500nm处的探测效率峰值为62%,同时在300~700nm范围内的光子探测效率均大于30%. 相似文献
8.
对InGaAs/InP单光子雪崩光电二极管进行结构设计与数值仿真,得到相应的电学与光学参数。针对雪崩击穿概率对器件光子探测效率的影响,研究了两次Zn扩散深度差、Zn扩散横向扩散因子、Zn掺杂浓度以及温度参数与器件雪崩击穿概率的关系。研究发现,当深扩散深度为2.3μm固定值时,浅扩散深度存在对应最佳目标值。浅扩散深度越深,相同过偏压条件下倍增区中心雪崩击穿概率越大,电场强度也会随之增加。当两次Zn扩散深度差小于0.6μm时,会发生倍增区外的非理想击穿,导致器件的暗计数增大。Zn扩散横向扩散因子越大,倍增区中心部分雪崩击穿概率越大,而倍增区边缘雪崩击穿概率会越小。在扩散深度不变的情况下,浅扩散Zn掺杂浓度对雪崩击穿概率无明显影响,但深扩散Zn掺杂浓度越高,相同过偏压条件下雪崩击穿概率越小。本文研究可为设计和研制高探测效率、低暗计数InGaAs/InP单光子雪崩光电二极管提供参考。 相似文献
9.
10.
11.
12.
13.
14.
15.
结合利用雪崩光电二极管(APD)进行红外单光子探测电路模型的工作原理和特点以及传输线瞬态电脉冲产生的过程,提出了将传输线瞬态过程脉冲发生电路模型用于APD雪崩抑制的一种新方法,该方法可以实现利用APD门模工作方式进行红外单光子探测的过程.主要从理论上计算了红外单光子信号入射APD时,传输线脉冲发生电路模型中负载电阻输出电脉冲的特点,讨论了传输线终端不同边界条件对输出电脉冲的影响,通过理论计算确定了这种利用APD进行红外单光子探测新模型的电路结构与参数,证明了该电路模型用于红外单光子探测APD门模工作方式的
关键词:
红外单光子探测技术
雪崩光电二极管(APD)
抑制电路
传输线瞬态过程 相似文献
16.
基于1.5GHz多次谐波超短脉冲门控InGaAs/InP雪崩光电二极管的近红外单光子探测技术研究 总被引:1,自引:0,他引:1
提出了一种高速门控盖格模式的铟镓砷/铟磷雪崩光电二极管(InGaAs/InP APD)单光子探测技术。将1.5GHz多次谐波超短脉冲加载到InGaAs/InP APD上,盖革模式下的光生雪崩信号埋藏在短脉冲充放电形成的噪声中,采用700MHz低通滤波器实现了50.6dB的噪声抑制比,有效地提取出了雪崩信号。通过半导体制冷,使InGaAs/InP APD工作在-30℃,1.5GHz短脉冲驱动下的InGaAs/InP APD在1550nm的探测效率为35%,暗计数率为每门6.4×10-5,超过了单纯使用1.5GHz正弦门的探测性能,而且在15%的探测效率下,2.7ns后发生后脉冲的概率仅为每门6.0×10-5。 相似文献
17.
18.
单光子雪崩二极管以其极高的光子灵敏度以及超快的响应时间在各领域被广泛应用。随着半导体技术的发展,集成多个像素以及时间测量电路的单光子雪崩二极管阵列逐渐普及。成像是一种以光子作为媒介获取目标物体信息的手段,基于单光子雪崩二极管的成像系统可以利用更丰富的光子计数以及光子时间信息实现极端环境下的目标探测。单光子雪崩二极管阵列具备并行采集光子信息的能力,进一步提高了光子信息的探测效率,能够替代传统单光子成像中单点探测器加扫描结构的探测体系,推动生物显微成像、散射成像以及非视域成像等技术的进步。本文梳理了单光子雪崩二极管阵列的发展历程以及技术趋势,按照是否需要光子时间信息分类介绍了单光子雪崩二极管阵列在成像方面的典型应用,结合应用分析了单光子雪崩二极管阵列相比于其他探测器的优势,对单光子雪崩二极管阵列的应用前景进行了展望。 相似文献
19.
当光微弱到以单个光子发射时,成像系统只有利用光子计数模式才能探测到单光子信息。采用基于碰撞电离效应的全固态雪崩光电二极管作为探测元件,构成微光环境下的光子计数成像实验系统。该系统的硬件主要由雪崩光电二极管构成的单光子计数器、计算机、微光照度计、2维电控导轨、控制器、暗箱等组成。控制器的软件在Altera公司Quartus环境下设计,主要完成导轨运动的控制;上位机软件采用VC++编程实现系统的数据采集处理、系统功能控制和光子计数图像显示等。该系统为全固态结构,工作电压小于35 V,暗计数率小于4 Hz。所建光子计数成像系统在10-5 lx微光环境下实现了目标的探测成像。 相似文献
20.
当光微弱到以单个光子发射时,成像系统只有利用光子计数模式才能探测到单光子信息。采用基于碰撞电离效应的全固态雪崩光电二极管作为探测元件,构成微光环境下的光子计数成像实验系统。该系统的硬件主要由雪崩光电二极管构成的单光子计数器、计算机、微光照度计、2维电控导轨、控制器、暗箱等组成。控制器的软件在Altera公司Quartus环境下设计,主要完成导轨运动的控制;上位机软件采用VC++编程实现系统的数据采集处理、系统功能控制和光子计数图像显示等。该系统为全固态结构,工作电压小于35 V,暗计数率小于4 Hz。所建光子计数成像系统在10-5 lx微光环境下实现了目标的探测成像。 相似文献