首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
In this paper, we discuss a copula defined by the Gaussian subordination method. The copula can capture the dependence between extreme events, and asymmetric dependence, which are observed in empirical financial return distributions. We further perform an empirical test for this new copula against the standard Gaussian copula using 10 years daily returns of the Standard&Poor’s 500 (S&P500) and the Deutscher Aktien Index (DAX) equity market indices.  相似文献   

2.
Tail dependence refers to clustering of extreme events. In the context of financial risk management, the clustering of high-severity risks has a devastating effect on the well-being of firms and is thus of pivotal importance in risk analysis.When it comes to quantifying the extent of tail dependence, it is generally agreed that measures of tail dependence must be independent of the marginal distributions of the risks but rather solely copula-dependent. Indeed, all classical measures of tail dependence are such, but they investigate the amount of tail dependence along the main diagonal of copulas, which has often little in common with the concentration of extremes in the copulas’ domain of definition.In this paper we urge that the classical measures of tail dependence may underestimate the level of tail dependence in copulas. For the Gaussian copula, however, we prove that the classical measures are maximal. The implication of the result is two-fold: On the one hand, it means that in the Gaussian case, the (weak) measures of tail dependence that have been reported and used are of utmost prudence, which must be a reassuring news for practitioners. On the other hand, it further encourages substitution of the Gaussian copula with other copulas that are more tail dependent.  相似文献   

3.
This paper introduces mortality dependence in multi-country mortality modeling using a dynamic copula approach. Specifically, we use time-varying copula models to capture the mortality dependence structure across countries, examining both symmetric and asymmetric dependence structures. In addition, to capture the phenomenon of a heavy tail for the multi-country mortality index, we consider not only the setting of Gaussian innovations but also non-Gaussian innovations under the Lee–Carter framework model. As tests of the goodness of fit of different dynamic copula models, the pattern of mortality dependence, and the distribution of the innovations, we used empirical mortality data from Finland, France, the Netherlands, and Sweden. To understand the effect of mortality dependence on longevity derivatives, we also built a valuation framework for pricing a survivor index swap, then investigated the fair swap rates of a survivor swap numerically. We demonstrate that failing to consider the dynamic copula mortality model and non-Gaussian innovations would lead to serious underestimations of the swap rates and loss reserves.  相似文献   

4.
This paper is concerned with the statistical modeling of the dependence structure of multivariate financial data using the copula, and the application of copula functions in VaR valuation. After the introduction of the pure copula method and the maximum and minimum mixture copula method, authors present a new algorithm based on the more generalized mixture copula functions and the dependence measure, and apply the method to the portfolio of Shanghai stock composite index and Shenzhen stock component index. Comparing with the results from various methods, one can find that the mixture copula method is better than the pure Gaussian copula method and the maximum and minimum mixture copula method on different VaR level.  相似文献   

5.
This paper discusses the correlation structure between London Interbank Offered Rates (LIBOR) by using the copula function. We start from one simplified model of A. Brace, D. Gatarek, and M. Musiela (1997) and find out that the copula function between two LIBOR rates can be expressed as a sum of an infinite series, where the main term is a distribution function with Gaussian copula. Partial differential equation method is used for deriving the copula expansion. Numerical results show that the copula of the LIBOR rates and Gaussian copula are very close in the central region and differ in the tail, and the Gaussian copula approximation to the copula function between the LIBOR rates provides satisfying results in the normal situation.  相似文献   

6.
A copula entropy approach to correlation measurement at the country level   总被引:1,自引:0,他引:1  
The entropy optimization approach has widely been applied in finance for a long time, notably in the areas of market simulation, risk measurement, and financial asset pricing. In this paper, we propose copula entropy models with two and three variables to measure dependence in stock markets, which extend the copula theory and are based on Jaynes’s information criterion. Both of them are usually applied under the non-Gaussian distribution assumption. Comparing with the linear correlation coefficient and the mutual information, the strengths and advantages of the copula entropy approach are revealed and confirmed. We also propose an algorithm for the copula entropy approach to obtain the numerical results. With the experimental data analysis at the country level and the economic circle theory in international economy, the validity of the proposed approach is approved; evidently, it captures the non-linear correlation, multi-dimensional correlation, and correlation comparisons without common variables. We would like to make it clear that correlation illustrates dependence, but dependence is not synonymous with correlation. Copulas can capture some special types of dependence, such as tail dependence and asymmetric dependence, which other conventional probability distributions, such as the normal p.d.f. and the Student’s t p.d.f., cannot.  相似文献   

7.
This paper investigates the structure of dependence among twelve European markets and among twelve Asian-Pacific markets. The dynamic of the dependence structure is described by a two-state regime switching model. The dependence structure during a bull phase is modelled by the Gaussian copula, while dependence during a bear phase is modelled by the regular vine copula. We analyze the regular vine structure in the second regime precisely. We perform a simplification procedure using a likelihood-ratio test and discuss the substitution of general regular vines by canonical vines or drawable vines. The analysis confirms the two-state nature of financial markets in addition to asymmetric and heavy-tailed dependences. Additionally, the European market has proven to be more strongly connected than the Asian-Pacific market, and European dependences are deeper in terms of conditional dependences. The results can be used by international investors by taking into account differences of both analyzed regions. Additionally, the analysis may help with the crisis prediction. The shift time to the market phase describing crisis times occurs significantly before the crisis itself.  相似文献   

8.
Copulas are popular as models for multivariate dependence because they allow the marginal densities and the joint dependence to be modeled separately. However, they usually require that the transformation from uniform marginals to the marginals of the joint dependence structure is known. This can only be done for a restricted set of copulas, for example, a normal copula. Our article introduces copula-type estimators for flexible multivariate density estimation which also allow the marginal densities to be modeled separately from the joint dependence, as in copula modeling, but overcomes the lack of flexibility of most popular copula estimators. An iterative scheme is proposed for estimating copula-type estimators and its usefulness is demonstrated through simulation and real examples. The joint dependence is modeled by mixture of normals and mixture of normal factor analyzer models, and mixture of t and mixture of t-factor analyzer models. We develop efficient variational Bayes algorithms for fitting these in which model selection is performed automatically. Based on these mixture models, we construct four classes of copula-type densities which are far more flexible than current popular copula densities, and outperform them in a simulated dataset and several real datasets. Supplementary material for this article is available online.  相似文献   

9.

Association or interdependence of two stock prices is analyzed, and selection criteria for a suitable model developed in the present paper. The association is generated by stochastic correlation, given by a stochastic differential equation (SDE), creating interdependent Wiener processes. These, in turn, drive the SDEs in the Heston model for stock prices. To choose from possible stochastic correlation models, two goodness-of-fit procedures are proposed based on the copula of Wiener increments. One uses the confidence domain for the centered Kendall function, and the other relies on strong and weak tail dependence. The constant correlation model and two different stochastic correlation models, given by Jacobi and hyperbolic tangent transformation of Ornstein-Uhlenbeck (HtanOU) processes, are compared by analyzing daily close prices for Apple and Microsoft stocks. The constant correlation, i.e., the Gaussian copula model, is unanimously rejected by the methods, but all other two are acceptable at a 95% confidence level. The analysis also reveals that even for Wiener processes, stochastic correlation can create tail dependence, unlike constant correlation, which results in multivariate normal distributions and hence zero tail dependence. Hence models with stochastic correlation are suitable to describe more dangerous situations in terms of correlation risk.

  相似文献   

10.
Modeling dependence in high-dimensional systems has become an increasingly important topic. Most approaches rely on the assumption of a multivariate Gaussian distribution such as statistical models on directed acyclic graphs (DAGs). They are based on modeling conditional independencies and are scalable to high dimensions. In contrast, vine copula models accommodate more elaborate features like tail dependence and asymmetry, as well as independent modeling of the marginals. This flexibility comes however at the cost of exponentially increasing complexity for model selection and estimation. We show a novel connection between DAGs with limited number of parents and truncated vine copulas under sufficient conditions. This motivates a more general procedure exploiting the fast model selection and estimation of sparse DAGs while allowing for non-Gaussian dependence using vine copulas. By numerical examples in hundreds of dimensions, we demonstrate that our approach outperforms the standard method for vine structure selection. Supplementary material for this article is available online.  相似文献   

11.
This paper presents the use of graphical models and copula functions in Estimation of Distribution Algorithms (EDAs) for solving multivariate optimization problems. It is shown in this work how the incorporation of copula functions and graphical models for modeling the dependencies among variables provides some theoretical advantages over traditional EDAs. By means of copula functions and two well known graphical models, this paper presents a novel approach for defining new EDAs. Either dependence is modeled by a copula function chosen from a predefined set of six functions that aim to cover a wide range of inter-relations. It is also shown how the use of mutual information in the learning of graphical models implies a natural way of employing copula entropies. The experimental results on separable and non-separable functions show that the two new EDAs, which adopt copula functions to model dependencies, perform better than their original version with Gaussian variables.  相似文献   

12.
Reliability analysis requires modeling of joint probability distribution of uncertain parameters, which can be a challenge since the random variables representing the parameter uncertainties may be correlated. For convenience, a Gaussian data dependence is commonly assumed for correlated random variables. This paper first investigates the effect of multidimensional non-Gaussian data dependences underlying the multivariate probability distribution on reliability results. Using different bivariate copulas in a vine structure, various data dependences can be modeled. The associated copula parameters are identified from available statistical information by moment matching techniques. After the development of the vine copula model for representing the multivariate probability distribution, the reliability involving correlated random variables is evaluated based on the Rosenblatt transformation. The impact of data dependence is significant because a large deviation in failure probability is observed, which emphasizes the need for accurate dependence characterization. A practical method for dependence modeling based on limited data is thus provided. The result demonstrates that the non-Gaussian data dependences can be real in practice, and the reliability can be biased if the Gaussian dependence is used inappropriately. Moreover, the effect of conditioning order on reliability should not be overlooked except that the vine structure contains only one type of copula.  相似文献   

13.
Conditional Value at Risk (CVaR) is widely used in portfolio optimization as a measure of risk. CVaR is clearly dependent on the underlying probability distribution of the portfolio. We show how copulas can be introduced to any problem that involves distributions and how they can provide solutions for the modeling of the portfolio. We use this to provide the copula formulation of the CVaR of a portfolio. Given the critical dependence of CVaR on the underlying distribution, we use a robust framework to extend our approach to Worst Case CVaR (WCVaR). WCVaR is achieved through the use of rival copulas. These rival copulas have the advantage of exploiting a variety of dependence structures, symmetric and not. We compare our model against two other models, Gaussian CVaR and Worst Case Markowitz. Our empirical analysis shows that WCVaR can asses the risk more adequately than the two competitive models during periods of crisis.  相似文献   

14.
The dependence of large values in a stochastic process is an important topic in risk, insurance and finance. The idea of risk contagion is based on the idea of large value dependence. The Gaussian copula notoriously fails to capture this phenomenon. Two notions in a process or vector context which summarize extremal dependence in a function comparable to a correlation function are the extremal dependence measure (EDM) and the extremogram. We review these ideas and compare the two tools and end with a central limit theorem for a natural estimator of the EDM which allows drawing confidence bands comparable to those provided by Bartlett’s formula in a classical context of sample correlation functions.  相似文献   

15.
This paper combines copula functions with GARCH-type models to construct the conditional joint distribution, which is used to estimate Value-at-Risk (VaR) of an equally weighted portfolio comprising crude oil futures and natural gas futures in energy market. Both constant and time-varying copulas are applied to fit the dependence structure of the two assets returns. The findings show that the constant Student t copula is a good compromise for effectively fitting the dependence structure between crude oil futures and natural gas futures. Moreover, the skewed Student t distribution has a better fit than Normal and Student t distribution to the marginal distribution of each asset. Asymmetries and excess kurtosis are found in marginal distributions as well as in dependence. We estimate VaR of the underlying portfolio to be 95% and 99%, by using the Monte Carlo simulation. Then using backtesting, we compare the out-of-sample forecasting performances of VaR estimated by different models.  相似文献   

16.
This paper demonstrates how to use distorted Gaussian copula functions to produce a heavy tailed portfolio loss distribution in the context of synthetic Collateralized Debt Obligations (CDOs). Distortion functions have not previously been used in this area. Hence, we demonstrate that it is possible to simulate realistic tranche prices by incorporating distorted copula functions within a well established CDO pricing system, such as that of JP Morgan. Furthermore, we only require a single dependence parameter for the entire portfolio rather than one per tranche. Thus, we are providing practitioners with a simpler and more flexible alternative to current CDO pricing methods.  相似文献   

17.
Most modern products that are highly reliable are complex in their inner and outer structures. This situation indicates quality characterization by the interaction of multiple performance characteristics, which motivates the utilization of robust reliability models to obtain robust estimates. It is paramount to obtaining substantial information about a product's life cycle; therefore, when multiple performance characteristics are dependent, it is important to find models that address the joint distribution of performance degradation of such. In this paper, a reliability model for products with 2 fatigue‐crack growth characteristics related to 2 degradation processes is developed. The proposed model considers the dependence among degradation processes by using copula functions considering the marginal degradation processes as inverse Gaussian processes. The statistical inference is performed by using a Bayesian approach to estimate the parameters of the joint bivariate model. A time‐scale transformation is considered to assure monotone paths of the degradation trajectories. The comparison results of the reliability analysis, under both dependent and independent assumptions, are reported with the implementation of the proposed modeling in a case study, which consists of the crack propagation data of 2 terminals of an electronic device.  相似文献   

18.
It is well known that the empirical copula process converges weakly to a centered Gaussian field. Because the covariance structure of the limiting process depends on the partial derivatives of the unknown copula several bootstrap approximations for the empirical copula process have been proposed in the literature. We present a brief review of these procedures. Because some of these procedures also require the estimation of the derivatives of the unknown copula we propose an alternative approach which circumvents this problem. Finally a simulation study is presented in order to compare the different bootstrap approximations for the empirical copula process.  相似文献   

19.
In this paper we propose forecasting market risk measures, such as Value at Risk (VaR) and Expected Shortfall (ES), for large dimensional portfolios via copula modeling. For that we compare several high dimensional copula models, from naive ones to complex factor copulas, which are able to simultaneously tackle the curse of dimensionality and introduce a high level of complexity into the model. We explore both static and dynamic copula fitting. In the dynamic case we allow different levels of flexibility for the dependence parameters which are driven by a GAS (Generalized Autoregressive Scores) model, in the spirit of Oh and Patton (2015). Our empirical results, for assets negotiated at Brazilian BOVESPA stock market from January, 2008 to December, 2014, suggest that, compared to the other copula models, the GAS dynamic factor copula approach has a superior performance in terms of AIC (Akaike Information Criterion) and a non-inferior performance with respect to VaR and ES forecasting.  相似文献   

20.
Dominik Kortschak 《Extremes》2012,15(3):353-388
In this paper we consider dependent random variables with common regularly varying marginal distribution. Under the assumption that these random variables are tail-independent, it is well known that the tail of the sum behaves like in the independence case. Under some conditions on the marginal distributions and the dependence structure (including Gaussian copula’s and certain Archimedean copulas) we provide the second-order asymptotic behavior of the tail of the sum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号