首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analytical system composed of a cryofocusing trap injector device coupled to a gas chromatograph with mass spectrometric detection (CTI-GC–MS) specific for the on-line analysis in air of volatile chlorinated hydrocarbons (VCHCs) (dichloromethane; chloroform; 1,1,1-trichloroethane; tetrachloromethane; 1,1,2-trichloroethylene; tetrachloroethylene) was developed. The cryofocusing trap injector was the result of appropriate low cost modifications to an original purge-and-trap device to make it suitable for direct air analysis even in the case of only slightly contaminated air samples, such as those from remote zones. The CTI device can rapidly and easily be rearranged into the purge-and-trap allowing water and air analysis with the same apparatus. Air samples, collected in stainless steel canisters, were introduced directly into the CTI-GC–MS system to realize cryo-concentration (at −120 °C), thermal desorption (at 200 °C) and for the subsequent analysis of volatiles. The operating phases and conditions were customised and optimized. Recovery efficiency was optimized in terms of moisture removal, cold trap temperature and sampling mass flow. The injection of entrapped volatiles was realized through a direct transfer with high chromatographic reliability (capillary column–capillary column). These improvements allowed obtaining limits of detection (LODs) at least one order of magnitude lower than current LODs for the investigated substances. The method was successfully employed on real samples: air from urban and rural areas and air from remote zones such as Antarctica.  相似文献   

2.

A purge-and-trap method was developed for sensitive and fast determination of trace MTBE in aqueous samples. The sample solutions were added with 10% (w/w) sodium sulfate and adjusted to pH 4 by acetic acid and sodium acetate buffer solution to improve the purge efficiency before the analysis. A CP-4010 purge-and-trap injector (PTI) was used to purge MTBE from water and cool it in the cold-trap kept at m 75°C, then the cooled trap was flash heated to release the analytes onto a HP-1 capillary column and detected by gas chromatography-flame ionization detector (GC-FID). A good linear response was obtained and the detection limit was 0.1 µg L m 1 . This method has been successfully applied to the determination of MTBE in several Chinese river samples.  相似文献   

3.
This paper describes a method of determining the following compounds in water characterised by complex matrices (raw waters and drinking waters): geosmin, 2-methylisoborneol (2-MIB), 2-isobutyl-3-methoxypyrazine (IBM), 2-isopropyl-3-methoxypyrazine (IPM) and 2,4,6-trichloroanisole (TCA). The method is carried out using headspace solid-phase microextraction (HS-SPME) combined with gas chromatography (GC) and ion trap mass spectrometry (ITMS). Several parameters of extraction and desorption were optimised through the use of a Combi PAL autosampler to automate various tasks (temperature extraction, extraction time, stir speed). Quantities of NaCl and the liquid volume/total volume ratio were also optimised. Double fragmentation (tandem MS/MS) was optimised on the target compounds. The method resulted in good linearity obtained for concentrations of 1 to 100?ng?L?1 and provided detection limits of approximately below 1?ng?L?1. Good precision (1–8%) was obtained. This method was successfully applied to the analysis of earthy and musty odours in municipal raw source waters with high concentrations of natural organic matter and in the corresponding treated waters. This is the first time MS/MS has been used to analyse odorous compounds in waters destined for human consumption. In addition, the method as developed is simple to use and lends itself to easy interpretation of chromatograms.  相似文献   

4.
A method is proposed for determination of lanthanum, cerium, praseodymium, neodymium, and samarium in mineral water by means of total-reflection X-ray fluorescence analysis. In this work, the combined technique of preconcentration of rare earth ions is used. This technique consists of coprecipitation of metal hydroxides on the collector (iron (III) hydroxide) and dispersive liquid–liquid microextraction of their complexes with 1-(2-pyridylazo)-2-naphthol by chloroform in the presence of ethanol. The use of the developed hybrid approach allows simultaneous determination of the mentioned metals in mineral water in the range n(10–2–101) μg/L. The results of analysis of Arkhyz and Rychal-Su mineral waters by the proposed extraction–X-ray fluorescent method are confirmed by the literature data, obtained by inductively coupled plasma mass spectrometry.  相似文献   

5.
An on-line sequential injection system has been developed for spectrophotometric determination of chloride in drinking mineral, natural, and ground waters. Samples containing different concentrations of chloride were analyzed. The analysis is based on detection of the red iron(III) thiocyanate complex. The complex was monitored spectrophotometrically at 480 nm using de-ionized water as the carrier stream at a flow rate of 3.21 mL min(-1). The method was found to be linear within the range 0-50 mg L(-1) chloride; the detection limit was 3.01 mg L(-1). The fully automated method can be used to analyze 37 samples per hour with a relative standard deviation (RSD) better than 2.50%.  相似文献   

6.
A rapid multiresidue method for the analysis of more than 40 herbicides (such as simazine, terbuthylazine and diuron) in waters has been developed and validated by ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC/MS/MS). Prior to chromatographic determination, the samples were extracted using a solid-phase extraction procedure. The analysis was performed on an Acquity UPLC BEH C(18) column using a gradient elution profile and a mobile phase consisting of methanol and an aqueous solution of formic acid (0.01%). Other chromatographic and MS/MS parameters were optimised in order to improve selectivity and sensitivity of the analytes. The analytes were detected using electrospray ionisation (ESI)-MS/MS in positive ion mode with multiple reaction monitoring (MRM), optimising parameters such as voltage cone, capillary voltage, source and desolvation temperature, and desolvation and cone gas flow. The optimised method provides a rapid separation (less than 10 min) of the selected herbicides in the assayed matrices, and it was validated by the analysis of spiked blank matrix samples. Good linearity was obtained and the repeatability of the method was less than 20% for the lowest calibration point. The limits of detection ranged from 0.002 to 0.02 microg/L, and the limits of quantification from 0.005 to 0.05 microg/L, which were below the values specified by the European Union. Finally, the method was successfully applied to real environmental samples from Andalusia (southern Spain). Terbuthylazine, simazine, atrazine desisopropyl and desethyl terbuthylazine were the herbicides most frequently found in water samples.  相似文献   

7.
Abstract

The field of application of a mobile gas chromatographic device (Airmobtx monitor HC 1000 manufactured by Airmotec GmbH) originally conceived for the analysis of BTEX in air was extended to water analysis by using it in conjunction with membrane extraction. Volatile organic compounds diffuse out of water through a hollow fibre or flat membrane, are enriched onto sorption tubes integrated in the device, and then thermally desorbed and analysed by the gas chromatograph/flame ionisation detector. The suitability of various flat membranes and hollow fibres was investigated. Maximum extraction efficiency was obtained with a silicone hollow fibre measuring 0.3 m long, and with an inner diameter of 0.7 mm and a wall thickness of 100 μm. The extraction parameters were optimised. The linear dynamic range of the optimised method spans two orders of magnitude and the detection limits were found to be 0.1 μg/L for all BTEX compounds. By way of environmental applications, highly contaminated groundwater samples were analysed. The results correspond well to those achieved using conventional headspace/gas chromatography/flame ionisation detection.  相似文献   

8.
用NaOH-吡啶比色法可以测定水或某些废水中的微量CHCl3浓度,但测定N,N-二甲基甲酰胺(DMF)废水经CHCl3萃取DMF后的萃余液中CHCl3浓度时,DMF对显色的有严重的干扰。采用蒸馏预处理后,再用比色法测定蒸馏所得的馏液中CHCl3浓度的方法,可以消除废水中DMF对显色的干扰。研究了水样中DMF浓度、蒸馏汽化率等因素对比色时显色的影响,建立了蒸馏-比色法测定DMF废水萃余液中微量或大量CHCl3浓度的分析方法。对含10g/LDMF水样的测定,CHCl3的线性范围为0~0.75g/L;与顶空色谱法测定结果对比,测定CHCl3浓度为5g/L和0.16g/L水样的相对误差分别为2.1%和1.2%;对CHCl3浓度为0.575g/L的水样进行7次平行测定,相对标准偏差为6.6%。对含DMF<15g/L水样的分析,结果令人满意。  相似文献   

9.
J Liu  G Jiang  Q Zhou  Z Yao 《Analytical sciences》2001,17(11):1279-1283
A comprehensive method was developed for the sensitive and fast determination of trace levels of methyltin compounds in aqueous samples. Tin compounds in aqueous solution at pH 5 were converted to the corresponding volatile hydrides: CH3SnH3, (CH3)2SnH2, and (CH3)3SnH, by reaction with potassium borohydride. A CP-4010 purge and trap injector (PTI) was used to purge analyte species from water directly. The volatile derivatives were base-line separated on a capillary column in an Angilent-6890 gas chromatograph by a suitable temperature program and were detected by a flame photometric detector (FPD). The detection limits were 18 ng L-1 for monomethyltin, 12 ng L-1 for dimethyltin, and 3 ng L-1 for trimethyltin, respectively. This method was successfully applied to the determination of methyltin compounds in different aqueous samples.  相似文献   

10.
High resolution gas chromatography (HRGC) coupled to a “purge and trap” extraction-injection technique is described as a method of determining 1,2,4-trichlorobenzene in water at levels as low as parts-per-trillion (ppt). In order to investigate the interference from other volatile organic compounds (VOCs) several detection systems were compared: flame ionization, electron capture, and mass spectrometry-multiple ion detection. Concentrations ranging from 15 to 600 ng/L were analyzed in 20 ml standard aqueous solutions. The mean accuracy of the method varied from 89 to 103%, and its mean precision varied from ± 0.85 to ± 7.5 % for all detectors. The detection limits were 20 ng/L for FID, 2 ng/L for ECD and 0.5 ng/L for MID-MS detectors. The procedure was successfully applied to the analysis of industrial waste waters. The necessity of an appropriate internal standard to improve the quantitative determination and to determine possible losses or degradation of 1,2,4-trichlorobenzene during handling or storage is discussed.  相似文献   

11.
The on-line-coupling of ion chromatography (IC) and inductively coupled plasma mass spectrometry (ICP-MS) is a powerful tool for the determination of bromate in drinking waters. The use of a high-capacity and high-performance anion-exchanger combined with an NH4NO3-based elution system allows the determination of bromate in almost every water sample without any sample pretreatment. The method detection limits in the water samples investigated are 50 to 65 ng/L or 44 to 58 pg bromate, respectively. Considering sensivity as well as imprecision (5% at 500 ng/L bromate) and short analysis times (8 to 15 min per sample including sample uptake), the described IC-ICP-MS coupling is well suited for precise routine analyses of bromate in drinking waters at the sub μg/L level.  相似文献   

12.
Determination of uranium in tap water by ICP-MS   总被引:23,自引:0,他引:23  
A fast and accurate procedure has been developed for the determination of uranium at microg L(-1) level in tap and mineral water. The method is based on the direct introduction of samples, without any chemical pre-treatment, into an inductively coupled plasma mass spectrometer (ICP-MS). Uranium was determined at the mass number 238 using Rh as internal standard. The method provides a limit of detection of 2 ng L(-1) and a good repeatability with relative standard deviation values (RSD) about 3% for five independent analyses of samples containing 73 microg L(-1) of uranium. Recovery percentage values found for the determination of uranium in spiked natural samples varied between 91% and 106%. Results obtained are comparable with those found by radiochemical methods for natural samples and of the same order for the certified content of a reference material, thus indicating the accuracy of the ICP-MS procedure without the need of using isotope dilution. A series of mineral and tap waters from different parts of Spain and Morocco were analysed.  相似文献   

13.
Compound-specific isotope analysis (CSIA) has been established as a useful tool in the field of environmental science, in particular in the assessment of contaminated sites. What limits the use of gas chromatography/isotope ratio mass spectrometry (GC/IRMS) is the low sensitivity of the method compared with GC/MS analysis; however, the development of suitable extraction and enrichment techniques for important groundwater contaminants will extend the fields of application for GC/IRMS. So far, purge and trap (P&T) is the most effective, known preconcentration technique for on-line CSIA with the lowest reported method detection limits (MDLs in the low microg/L range). With the goal of improving the sensitivity of a fully automated GC/IRMS analysis method, a commercially available P&T system was modified. The method was evaluated for ten monoaromatic compounds (benzene, toluene, para-xylene, ethylbenzene, propylbenzene, isopropylbenzene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, fluorobenzene) and ten halogenated volatile organic compounds (VOCs) (dichloromethane, cis-1,2-dichloroethene, trans-1,2-dichloroethene, carbon tetrachloride, chloroform, 1,2-dichloroethane, trichloroethene, tetrachlorethene, 1,2-dibromoethane, bromoform). The influence of method parameters, including purge gas flow rates and purge times, on delta13C values of target compounds was evaluated. The P&T method showed good reproducibility, high linearity and small isotopic fractionation. MDLs were determined by consecutive calculation of the delta13C mean values. The last concentration for which the delta13C value was within this iterative interval and for which the standard deviation was lower than +/-0.5 per thousand for triplicate measurements was defined as the MDL. MDLs for monoaromatic compounds between 0.07 and 0.35 microg/L are the lowest values reported so far for continuous-flow isotope ratio measurements using an automated system. MDLs for halogenated hydrocarbons were between 0.76 and 27 microg/L. The environmental applicability of the P&T-GC/IRMS method in the low-microg/L range was demonstrated in a case study on groundwater samples from a former military air field contaminated with VOCs.  相似文献   

14.
P W Crozier  J B Plomley  L Matchuk 《The Analyst》2001,126(11):1974-1979
Ontario Provincial Water Quality Objectives for polycyclic aromatic hydrocarbons (PAHs) in surface waters require low parts per trillion (ng L(-1))/high parts per quadrillion (pg L(-1)) detection limits. To meet these monitoring requirements, a solid phase extraction-gas chromatography-ion trap mass spectrometry (SPE-GC-ITMS) method was developed. Seventeen priority PAHs commonly monitored in surface and drinking waters were examined using an external ionization ion trap mass spectrometer operated in selected ion monitoring (SIM) mode. Under 70 eV electron ionization (El) conditions, both the quantitative [M]+* ion and confirmatory [M - 2H]+* ion were formed in classical abundance ratios. Each of these ion species was isolated in the ion trap using a specific scan function. However, to overcome poor levels of confirmatory ion abundance which otherwise restrict PAH method detection limits (MDLs), the abundance of [M - 2H]+* ions was augmented during isolation by causing the dissociation of [M]+* with the broad-band waveform used for high mass ion ejection. Augmenting the [M - 2H]+* signal intensity facilitated the achievement of MDLs of approximately 1 ng L(-1). PAHs in surface water samples that were not detected by current Ontario Ministry of the Environment high-performance liquid chromatography (HPLC)-fluorescence and GC-single-stage quadrupole mass spectrometry methods were detected and quantified using the ion trap mass spectrometry SIM method. The data produced by all three methods on natural water samples fortified at sub-parts per billion (ppb) levels were comparable. When applied to Standards Council of Canada/Canadian Association for Environmental Analytical Laboratories (SCC/CAEAL, www.CAEAL.ca) accreditation audit samples, the SPE-GC-ITMS method results met all performance evaluation criteria.  相似文献   

15.
As part of a project funded by the European Commission (EC) for the development and evaluation of multiresidue methods for analysis of drinking and related waters, 17 European laboratories evaluated a method using styrene-divinylbenzene copolymer solid-phase extraction followed by liquid chromatography with diode array detection. The main aim of the study was to evaluate whether the method meets the requirements of EC Drinking Water Directive 98/83 in terms of accuracy, precision, and detection limit for 21 pesticides according to the following requirements: limit of detection, < or =0.025 microg/L; accuracy expressed as recovery, between 75 and 125%; and precision expressed as repeatability relative standard deviation of the method, <12.5%, and as reproducibility relative standard deviation of the method, <25%. Analyses for unknown concentrations were performed with commercial bottled and tap waters. All laboratories were able to achieve detection limits of 0.01 microg/L for all pesticides except pirimicarb (0.02 microg/L). The criteria for repeatability were met for all compounds. Terbutryn in bottled water and carbendazim in tap water did not meet the criteria for reproducibility. In terms of accuracy, the method met the requirements for all pesticides in both matrixes, except for metamitron. However, several compounds (linuron, terbutryn, propazine, metobromuron, and isoproturon) showed recoveries slightly below 75%.  相似文献   

16.
Deng X  Liang G  Chen J  Qi M  Xie P 《Journal of chromatography. A》2011,1218(24):3791-3798
Production and fate of taste and odor (T&O) compounds in natural waters are a pressing environmental issue. Simultaneous determination of these complex compounds (covering a wide range of boiling points) has been difficult. A simple and sensitive method for the determination of eight malodors products of cyanobacterial blooms was developed using automatic purge and trap (P&T) coupled with gas chromatography-mass spectrometry (GC-MS). This extraction and concentration technique is solvent-free. Dimethylsulfide (DMS), dimethyltrisulfide (DMTS), 2-isopropyl-3-methoxypyrazine (IPMP), 2-isobutyl-3-methoxypyrazine (IBMP), 2-methylisoborneol (MIB), β-cyclocitral, geosmin (GSM) and β-ionone were separated within 15.3 min. P&T uses trap #07 and high-purity nitrogen purge gas. The calibration curves of the eight odors show good linearity in the range of 1-500 ng/L with a correlation coefficient above 0.999 (levels=8) and with residuals ranging from approximately 83% to 124%. The limits of detection (LOD) (S/N=3) are all below 1.5 ng/L that of GSM is even lower at 0.08 ng/L. The relative standard deviations (RSD) are between 3.38% and 8.59% (n=5) and recoveries of the analytes from water samples of a eutrophic lake are between 80.54% and 114.91%. This method could be widely employed for monitoring these eight odors in natural waters.  相似文献   

17.
A novel solid-phase microextraction (SPME) method coupled to gas chromatography with electron capture detection (GC-ECD) was developed as an alternative to liquid-liquid and solid-phase extraction for the analysis of short-chain chlorinated paraffins (SCCPs) in water samples. The extraction efficiency of five different commercially available fibres was evaluated and the 100-microm polydimethylsiloxane coating was the most suitable for the absorption of the SCCPs. Optimisation of several SPME parameters, such as extraction time and temperature, ionic strength and desorption time, was performed. Quality parameters were established using Milli-Q, tap water and river water. Linearity ranged between 0.06 and 6 microg l(-1) for spiked Milli-Q water and between 0.6 and 6 microg l(-1) for natural waters. The precision of the SPME-GC-ECD method for the three aqueous matrices was similar and gave relative standard deviations (RSD) between 12 and 14%. The limit of detection (LOD) was 0.02 microg l(-1) for Milli-Q water and 0.3 microg l(-1) for both tap water and river water. The optimised SPME-GC-ECD method was successfully applied to the determination of SCCPs in river water samples.  相似文献   

18.
我国每年的船舶压载水排放量巨大,压载水中含有浮游生物、病原体及其幼虫或孢子等,若处理不当,会对排放水域的生态环境造成严重影响。排放压载水前常使用电解法对其进行处理,电解产生的次氯酸钠溶液,能有效杀灭残余的微生物。但电解后会产生副产物三卤甲烷(THMs),其对人体有一定的健康风险,建立船舶压载水中三卤甲烷的测定方法具有重要意义。该研究建立了采用气相色谱-负化学源质谱(GC-NCI-MS)测定船舶压载水中4种三卤甲烷(包括三氯甲烷、二氯一溴甲烷、一氯二溴甲烷、三溴甲烷)的分析方法。船舶压载水样品经过顶空进样技术处理后,通过DB-5MS UI毛细管色谱柱(30 m×0.25 mm×1.0μm)分离,气相色谱-负化学源质谱仪测定,在选择离子扫描(SIM)模式下分析,采用外标法进行定量。4种三卤甲烷在0.2~50μg/L范围内线性关系良好,相关系数(r)≥0.995,定量限(S/N=10)为0.1~0.2μg/L,在0.2、0.5、2.0μg/L 3个加标水平下,4种THMs的平均回收率为90.3%~106.8%,相对标准偏差(RSD)为1.4%~6.2%。该方法准确、稳定、可靠,可用于测定船舶压载水中4种THMs的含量。使用建立的测定方法对36个船舶压载水进行测定,三溴甲烷、二溴一氯甲烷、一溴二氯甲烷与三氯甲烷的检出率分别为83.3%、69.4%、22.2%和19.4%,检出值分别为34.25~221.5μg/L、3.52~41.87μg/L、1.52~8.56μg/L和0.02~5.46μg/L。  相似文献   

19.
The present work describes the development of a highly sensitive analytical method based on liquid chromatography-quadrupole linear ion trap-mass spectrometry (LC-QqLIT-MS) for the determination of nine sulfonamide antibiotics and one N4-acetylated metabolite in environmental waters (wastewater, surface water and groundwater) and bottled mineral water. Special emphasis was devoted to the elimination of matrix components during solid-phase extraction (SPE) by the evaluation of three different extraction/purification strategies: single cartridges (Oasis HLB and Oasis MCX) and tandem (TD) extraction (combination of both). The method developed proved to be suitable for sulfonamide determination in all kinds of waters tested. The method was shown to be linear in a wide concentration range, with correlation coefficients higher than 0.999 for all compounds except for sulfadimethoxine (R2 0.997). The overall instrumental repeatability was satisfactory, with the exception of the metabolite (RSD 34%). Method limits of detection achieved for sulfonamides were in the range 0.01-1.13 ng L(-1) and for the metabolite 0.08-461 ng L(-1). Recovery rates were estimated at 500 ng L(-1) spike level in the four water matrices selected. The highest recovery achieved in all matrices was that corresponding to the Oasis HLB cartridge. In environmental waters, recovery values obtained were higher than 61% for the surface water and, in general, higher than 90% for groundwater and wastewater. Bottled mineral water exhibited recovery rates higher than 92%, with the exception of sulfamethoxypiridazine (82%) and sulfapyridine (86%) In order to demonstrate the applicability of the developed method, several water samples were analyzed. Results evidenced the requirement for consideration of N4-acetylated metabolites of sulfonamides in environmental residue analysis to avoid the underestimation of removal rates of such pharmaceutical compounds during wastewater treatments.  相似文献   

20.
Stir bar sorptive extraction (SBSE) followed by HPLC-fluorescence detection (FLD) was optimised for analysing 15 polycyclic aromatic hydrocarbons (PAHs) from water samples, especially rainfall water with low PAH content. The literature data described widely different experimental conditions for the extraction of PAHs by SBSE. A chemometric approach was therefore used to evaluate the statistically influential and/or interacting factors, among those described in the literature, and to find the best extraction and desorption conditions. Among six factors studied in a 2(6-2) fractional factorial design, only sample volume, extraction time and the interaction between both of them had significant effects on the PAH extraction recoveries. Optimal sample volume of 10 mL and extraction time of 140 min were obtained with a response surface design. For the desorption conditions, a Box-Behnken design showed that desorption time, temperature and PAH concentrations had significant effects. The best conditions were two successive desorptions with 100 microL of acetonitrile for 25 min at 50 degrees C. The optimised method was repeatable (RSD< or =5.3% for 50 ng L(-1) spiked water and < or =12.8% for 5 ng L(-1) spiked water), linear (R(2)> or =0.9956), with quantitative absolute recoveries (> or =87.8% for 50 ng L(-1) spiked water), and with the LOD between 0.2 and 1.5 ng L(-1). The optimised method was successfully applied to six-rainfall water samples collected in a suburban area. The total PAHs concentrations studied ranged from 31 to 105.1 ng L(-1). Seasonal variation was observed and on average three PAHs were at the highest concentrations (phenanthrene, fluoranthene and pyrene).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号