首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Enkephalins are peptides with morphine-like activity. To achieve their biological function, they must be transported from an aqueous phase to the lipid-rich environment of their membrane bound receptor proteins. In our study, zeta potential (ZP) method was used to detect the association of Leu-enkephalin and Leu-enkephalinamide with phospholipid liposomes constituted from egg-phosphatidylcholine (EPC), dioleoyl-phosphatidylethanolamine (DOPE), cholesterol (Chol), sphingomyelin (SM) as well as soybean phospholipid (SBPL). Transfer of the peptides over lipid membranes was examined by electrophysiology technique (ET) and fluorescence spectroscopy (FS), and further confirmed using 4-fluoro-7-nitrobenzofurazan (NBD-F) labeled Leu-enkephalin (NBD-F-enkephalin) with confocal laser scanning microscopy method (CLSM). Results of zeta potential showed that enkephalinamide associated with lipid membranes and gradually saturated on the membranes either hydrophobically or electrostatically or both. Data from electrophysiology technique indicated that Leu-enkephalin could cause transmembrane currents, suggesting the transfer of peptides across lipid membranes. Transfer examined by fluorescence spectroscopy implied that it could be separated into three steps, adsorption, transportation and desorption, which was afterward reaffirmed by confocal laser scanning microscopy. Transfer efficiencies of enkephalin across SBPL, EPC/DOPE, EPC/DOPE/SM, EPC/SM and EPC/Chol lipid bilayer membranes were evaluated with ET and CLSM experiments. Results showed that the addition of either sphingomyelin or cholesterol, or negatively charged lipid in lipid membrane composition could lower the transfer efficiency.  相似文献   

2.
Cyclosporin A (CsA) is a cyclic naturally occurring peptide used to prevent graft rejection in organ transplantations. Its immunosuppressive activity is due to the formation of a complex with cyclophilin A (Cyp), in which the cis 9MeLeu-10MeLeu amide bond of CsA assumes a trans conformation. The mechanism of the conformational inversion has not been delineated, but it has been postulated that metal ions binding induces a conformational change that enables CsA to bind Cyp. In this work, we solved the structures of CsA in sodium dodecyl sulfate (SDS) micelles (which enhance its solubility and mimic the hydrophobic environment clinically used for drug delivery) and its complex with Dy(III) ion, whose coordination chemistry is frequently used to reproduce the effect of Ca(II). The paramagnetic properties of Dy(III) allowed us to build up a structure using proton relaxation enhancements, which remains stable in a MD simulation in the micelle environment.  相似文献   

3.
Cyclosporin-A (CsA) is a pharmaceutical product which has a polypeptide structure and immunosuppressive activity. It may be administered in the form of liposomes, and this has a series of advantages. Therefore, in this paper, the possible interaction between CsA and phospholipids is studied. The superficial monolayer technique has been used as a liposome membrane model. From the isotherms of mixed monolayers of CsA and different phospholipids it is possible to prove that these systems obey the molecular area additivity rule when spread as mixed monolayers. Applying the Defay-Crisp phase rule, it is reasonable to conclude that these systems are immiscible given that they orientate themselves differently on thesurface. Copyright 2001 Academic Press.  相似文献   

4.
The aim of the present study was to evaluate the penetration of paclitaxel in normal as well as cancerous human cervical monolayer membranes and to compare these results with the paclitaxel penetration in a model dipalmitoylphosphatidylcholine (DPPC) monolayer. At physiologically relevant surface pressures of 30 mN/m, equilibrium drug penetration was observed in DPPC model membrane, whereas in cervical lipid model membranes exclusion of the drug and destabilization of the membrane was observed. The maximum surface pressure increment due to penetration (Δπmax) of 600 nM paclitaxel, for DPPC monolayer was found to be 3.6, 5.4 and 5.0 times higher than those for penetration in the cancerous monolayer at surface pressures 10, 20 and 30 mN/m, respectively. At initial surface pressure 10 mN/m, the maximum surface pressure increment, for 600 nM paclitaxel penetration, of normal cervical lipid membrane was double that of the cancerous cervical lipid membrane. At 30 mN/m initial surface pressure the representative IC50 concentration of the drug produced negligible drug penetration and significant membrane destabilization in cervical lipid model membranes. The difference in penetration profile could be due to differences in composition of the model membranes. The cholesterol level in cancerous cervical membrane was 1.5-folds higher than that in the normal cervical membrane. Apart from PC, another constituent present in 20–32% in cancerous and normal membranes is sphingomyelin (SM). Introduction of 70% SM to the DPPC monolayer decreased the Δπmax from 4.7 to 1.1 mN/m, revealing the rigidifying effect of SM which was directly proportional to the amount of SM added. Modulation of fluidity of the membranes can alter the penetration of paclitaxel in biological membranes and hence its toxicity profile.  相似文献   

5.
6.
Label-free imaging mass spectrometry is utilized the first time to study lipid-lipid interactions in a model membrane system. Ternary lipid mixtures of cholesterol (CH), sphingomyelin (SM), and phosphatidylcholine (PC) on supported Langmuir-Blodgett films are investigated as a mimic of the cellular membrane. The unique chemical specificity and imaging capability allow identification and localization of each lipid molecule in the membranes. The SM and PC in each ternary mixture vary in their acyl chain saturation with both, either, or neither one double bonded at the same position of their acyl chain. For the ternary mixtures with SM and PC both saturated or unsaturated, all the lipids are evenly distributed in the molecule-specific images. However, domain structures were observed for the two mixtures with either SM or PC unsaturated. In both films, the saturated lipid, whether it is SM or PC, colocalized with CH while the unsaturated lipid was excluded from the CH domains. These results strongly suggest that acyl chain saturation, rather than the specific interactions between SM and CH, is the dominating factor for SM colocalization with CH in the raft areas of the cellular membranes.  相似文献   

7.
The aim of the present study was to evaluate the penetration of paclitaxel in normal as well as cancerous human cervical monolayer membranes and to compare these results with the paclitaxel penetration in a model dipalmitoylphosphatidylcholine (DPPC) monolayer. At physiologically relevant surface pressures of 30 mN/m, equilibrium drug penetration was observed in DPPC model membrane, whereas in cervical lipid model membranes exclusion of the drug and destabilization of the membrane was observed. The maximum surface pressure increment due to penetration (Δπmax) of 600 nM paclitaxel, for DPPC monolayer was found to be 3.6, 5.4 and 5.0 times higher than those for penetration in the cancerous monolayer at surface pressures 10, 20 and 30 mN/m, respectively. At initial surface pressure 10 mN/m, the maximum surface pressure increment, for 600 nM paclitaxel penetration, of normal cervical lipid membrane was double that of the cancerous cervical lipid membrane. At 30 mN/m initial surface pressure the representative IC50 concentration of the drug produced negligible drug penetration and significant membrane destabilization in cervical lipid model membranes. The difference in penetration profile could be due to differences in composition of the model membranes. The cholesterol level in cancerous cervical membrane was 1.5-folds higher than that in the normal cervical membrane. Apart from PC, another constituent present in 20–32% in cancerous and normal membranes is sphingomyelin (SM). Introduction of 70% SM to the DPPC monolayer decreased the Δπmax from 4.7 to 1.1 mN/m, revealing the rigidifying effect of SM which was directly proportional to the amount of SM added. Modulation of fluidity of the membranes can alter the penetration of paclitaxel in biological membranes and hence its toxicity profile.  相似文献   

8.
A constrained cyclic ArgGly-Asp-D-Phe-Lys, abbreviated as cyclo(-RGDfK-), lipopeptide has been synthesized and incorporated into artificial membranes such as giant vesicles with DOPC and solid-supported lipid bilayers. The selective adhesion and spreading of endothelial cells of the human umbilical cord on solids functionalized by membranes with this RGD-lipopeptide have been observed. Furthermore, we have demonstrated strong selective adhesion of giant vesicles to endothelial cells through local adhesion domains by combined application of hydrodynamic flow field and reflection interference contrast microscopy (RICM). The adhesion can be inhibited by competition with a water-soluble RGD peptide. We suggest that this strategy could improve the efficiency of liposomes targeting used as vectors or as drug carriers to cells.  相似文献   

9.
The effect of peptide length and electrostatics on the interaction between Cardin motif peptides and lipid membranes was investigated for (AKKARA)(n) (n = 1-4) and (ARKAAKKA)(n) (n = 1-3) peptides (A, K, and R refer to alanine, lysine, and arginine, respectively) by fluorescence spectroscopy, circular dichroism, ellipsometry, z potential, and photon correlation spectroscopy measurements. The effect of the peptides regarding leakage induction of both zwitterionic and anionic liposomes increased with increasing peptide length, as did the peptide-induced killing of Enterococcus faecalis and Bacillus subtilis bacteria. The peptides, characterized by a random coil conformation both in buffer and when attached to the liposomes (helix content less than 20%), displayed an increased adsorption with increasing peptide length, and plateau adsorption for the longest peptides corresponded to 1 peptide per 65 and 17 lipid molecules for zwitterionic and anionic membranes, respectively. Control experiments with uncharged peptide analogues as well as experiments at high excess electrolyte concentration showed that peptide charges are important both for peptide adsorption and leakage induction. These observations, together with observations of the liposome z potential at different peptide additions as well as a comparison between the results for zwitterionic and anionic liposomes, suggest that electrostatically affected local packing effects are crucial for the action of these peptides, although pore formation such as that observed for many AMPs cannot be excluded at present.  相似文献   

10.
Three copies of peptide sequences from the peptaibol family, known to affect the permeability of the lipid bilayer of membranes, were connected to tris(2-aminoethyl)amine (TREN), a tripodal metal ion ligand, to prepare functional peptides capable of modifying the permeability of liposomal membranes. Some of the resulting tripodal polypeptide derivatives are very effective in promoting carboxyfluorescein (CF) leakage from CF-loaded unilamellar vesicles composed of a 70:30 phosphatidylcholine/cholesterol blend. The activity of these novel compounds was shown to be tunable upon metal ion coordination of the TREN subunit; the tripodal apopeptide was far more effective than its ZnII complex. Leakage experiments showed that a minimum number of five amino acids per peptide chain is required to form active systems. A mechanism is proposed in which the ZnII ion changes the conformation of the template from extended to globular and thus acts as an allosteric regulator of the activity of the systems. Molecular modeling studies indicate that when the three peptide chains are connected to the template in the extended conformation, the resulting tripodal polypeptide is able to span across the membrane, thus allowing the formation of permeable channels made of a cluster of molecules. The same change of conformation induces, to some extent, fusion of the membranes of different liposomes.  相似文献   

11.
The affinity capillary electrophoretic separation of the complex of the enzyme cyclophilin (Cyp) with the immunosuppressive drug cyclosporin A (CsA) from uncomplexed Cyp and CsA in phosphate buffer (pH 8) under non-denaturing conditions by equilibrium-mixture analysis is reported. Using a new approach combining mobility-shift analysis and electrophoretically mediated microanalysis the binding constant of rhCyp18 to CsA and derivatives was estimated.  相似文献   

12.
Lipophilic conjugates of the antitumor drug methotrexate (MTX) with lipoamino acids (LAAs) have been previously described as a tool to enhance MTX passive entrance into cells, overcoming a form of transport resistance which makes tumour cells insensitive to the antimetabolite. A knowledge of the mechanisms of interaction of such lipophilic derivatives with cell membranes could be useful for planning further lipophilic MTX derivatives with an optimal antitumour activity. To this aim, a calorimetric study was undertaken using a biomembrane model made from synthetic 1,2-dipalmitoyl-glycero-3-phosphocholine (DPPC) multilamellar liposomes. The effects of MTX and conjugates on the phase transition of liposomes were investigated using differential scanning calorimetry.

The interaction of pure MTX with the liposomes was limited to the outer part of the phospholipid bilayers, due to the polar nature of the drug. Conversely, its lipophilic conjugates showed a hydrophobic kind of interaction, perturbing the packing order of DPPC bilayers. In particular, a reduction of the enthalpy of transition from the gel to the liquid crystal phase of DPPC membranes was observed. Such an effect was related to the structure and mole fraction of the conjugates in the liposomes.

The antitumour activity of MTX conjugates was evaluated against cultures of a CCRF–CEM human leukemic T-cell line and a related MTX resistant sub-line. The in vitro cell growth inhibitory activity was higher for bis(tetradecyl) conjugates than for both the other shorter- and longer-chain derivatives. The biological effectiveness of the various MTX derivatives correlated very well with the thermotropic effects observed on the phase transition of DPPC biomembranes.  相似文献   


13.
采用同步荧光光谱考察细胞色素C(CytC)在脂质体环境中分子内基团微环境的变化,推测分子的空间构象。结果表明:CytC结合到脂质体上引起分子内基团重新组装和排布,氨基酸残基所处的微环境发生明显变化,体现在荧光光谱上,酪氨酸和色氨酸的光活性增强,色氨酸在水溶液中的分子内电荷转移得到抑制,此过程不涉及化学键的断裂。在脂质体环境中,尿素引起的CytC解聚变性效应得到明显抑制,脂质体与尿素在促进CytC分子内氨基酸残基发光上有协同效应。  相似文献   

14.
Composite poly(N-isopropylacrylamide) (PNIPAAm)/phosphatidylcholine (PC) microparticles were prepared by electrospraying. PC-based liposomes were subsequently generated upon the addition of water. The microparticles have an average diameter of ca. 1 μm, while the liposomes produced were found to have much smaller diameters of ca. 225–280 nm. The liposomes had zeta potentials of ?44 to ?50 mV, consistent with the formation of a stable suspension. Upon heat treatment, the liposomes exhibit phase transitions due to the influence of PNIPAAm. The liposomes containing 33 % PC have a phase transition temperature of approximately 36 °C, close to physiological conditions. The model drug ketoprofen could be loaded into electrosprayed microparticles and subsequently incorporated into self-assembled liposomes, with an entrapment efficiency for the latter process of ca. 75 %. Sustained drug release regulated by temperature was observed from these drug-loaded materials. At 25 °C, only 45 % of the total drug loading was released after 110 hours, while at 37 °C drug release approached 90 % over the same time period. The self-assembled liposomes reported here, therefore, have great potential as drug delivery devices.  相似文献   

15.
The conformation of peptide and protein drugs in various microenvironments and the interaction with drug carriers such as liposomes are of considerable interest. In this study the influence of microenvironments such as pH, salt concentration, and surface charge on the secondary structure of a model protein, lysozyme, either in solution or entrapped in liposomes with various molar ratios of phosphatidylcholine (PC):cholesterol (Chol) was investigated. It was found that entrapment efficiency was more pronounced in negatively charged liposomes than in non-charged liposomes, which was independent of Chol content and pH of hydration medium. The occurrence of aggregation, decrease in zeta potential, and alteration of 31P NMR chemical shift of negatively charged lysozyme liposomes compared to blank liposomes suggested that the electrostatic interaction plays a major role in protein–lipid binding. Addition of sodium chloride could impair the neutralizing ability of positively charged lysozyme on negatively charged membrane via chloride counterion binding. Neither lysozyme in various buffer solutions with sodium chloride nor that entrapped in liposomes showed any significant change in their secondary structures. However, significant decrease in α-helical content of lysozyme in non-charged liposomes at higher pH and salt concentrations was discovered.  相似文献   

16.
This contribution describes the discovery and properties of a synthetic, low-molecular weight compound that transports Cl- across bilayer membranes. Such compounds have potential as therapeutics for cystic fibrosis and cancer. The H+/Cl- co-transport activities of acyclic tetrabutylamides 1-6 were compared by using a pH-stat assay with synthetic EYPC liposomes. The ion transport activity of the most active compound, trimer 3, was an order of magnitude greater than that of calix[4]arene tetrabutylamide C1 a macrocycle known to function as a synthetic ion channel. Trimer 3 has an unprecedented function for a synthetic compound, as it induces a stable potential in liposomes experiencing a transmembrane Cl-/SO42- gradient. Data from both pH-stat and 35Cl NMR experiments indicate that 3 co-transports H+/Cl-. Although 3 transports both Cl- and H+ the overall process is not electrically silent. Thus, trimer 3 induces a stable potential in LUVs due to a transmembrane anionic gradient. The ability of trimer 3 to transport Cl-, to maintain a transmembrane potential, along with its high activity at uM concentrations, its low molecular weight, and its simple preparation, make this compound a valuable lead in drug development for diseases caused by Cl- transport malfunction.  相似文献   

17.
Liposome electrokinetic chromatography (LEKC) provides convenient and rapid methods for studying drug interactions with lipid bilayers using liposomes as a pseudostationary phase. LEKC was used to determine the effects of pH on the partitioning of basic drugs into liposomes composed of zwitterionic phosphatidylcholine (PC), anionic phosphatidylglycerol (PG), and cholesterol, which mimic the composition of natural cell membranes. An increase in pH results in a smaller degree of ionization of the basic drugs and consequently leads to a lower degree of interaction with the negatively charged membranes. From the LEKC retention data, the fractions of drugs distributed in the bulk aqueous and the liposome phase were determined at various pH values. Finally, lipid mediated shifts in the ionization constants of drugs were examined.  相似文献   

18.
The effects of antimalarial drugs halofantrine and lumefantrine on the fluoresence anisotropy of diphenylhexatriene (DPH)-containing phospholipid vesicles have been examined. Lumefantrine increases DPH anisotropy, indicating a condensing effect on bilayers of dipalmitoylphosphatidyl choline (DPPC), dioleoylphosphatidylcholine (DOPC), egg lecithin and mouse erythrocyte membranes (including membranes isolated from plasmodial-infected mice). Its condensing effect is more pronounced in bilayers of lower microviscosity. In contrast, increases or decreases in DPH anisotropy are observed with halofantrine, depending on the nature of the lipid. Decreases in anisotropy, which reflect a perturbing effect, are observed in bilayers of high microviscosity (for example, gel state of DPPC bilayers). Increases in anisotropy are observed in bilayers of low microviscosity (such as DOPC and egg lecithin bilayers). The perturbing effect of halofantrine is further confirmed by the increases in permeability of calcein-containing DPPC vesicles in the presence of the drug. However the perturbative effects of halofantrine are observed to the same magnitude in uninfected and plasmodial-infected erythrocyte membranes, and may not be relevant to the antimalarial action of the drug. In contrast, the condensing effect of lumefantrine is significantly greater in infected erythrocyte membranes and may contribute to its antimalarial action.  相似文献   

19.
The blood coagulation system relies on lipid membrane constituents to act as regulators of the coagulation process upon vascular trauma, and in particular the 2D configuration of the lipid membranes is known to efficiently catalyze enzymatic activity of blood coagulation factors. This work demonstrates a new application of a recently developed methodology to study blood coagulation at lipid membrane interfaces with the use of imaging technology. Lipid membranes with varied net charges were formed on silica supports by systematically using different combinations of lipids where neutral phosphocholine (PC) lipids were mixed with phospholipids having either positively charged ethylphosphocholine (EPC), or negatively charged phosphatidylserine (PS) headgroups. Coagulation imaging demonstrated that negatively charged SiO(2) and membrane surfaces exposing PS (obtained from liposomes containing 30% of PS) had coagulation times which were significantly shorter than those for plain PC membranes and EPC exposing membrane surfaces (obtained from liposomes containing 30% of EPC). Coagulation times decreased non-linearly with increasing negative surface charge for lipid membranes. A threshold value for shorter coagulation times was observed below a PS content of ~6%. We conclude that the lipid membranes on solid support studied with the imaging setup as presented in this study offers a flexible and non-expensive solution for coagulation studies at biological membranes. It will be interesting to extend the present study towards examining coagulation on more complex lipid-based model systems.  相似文献   

20.
[Structure: see text] The synthesis and characterization of thermoresponsive, water-soluble poly-N-isopropyl acrylamide (PNIPAM) derived macroligands displaying cyclosporin A (CsA) and dexamethasone (Dex) for use as novel affinity resins are described. Characterization of these soluble macroligands, including ligand loading and integrity, was determined by 1H NMR spectroscopy. One of the CsA macroligands was used in a protein affinity experiment to capture known binding proteins of CsA, the cyclophilins, from Jurkat T-cell lysates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号