首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The continuous extrusion of a metallocene linear low-density polyethylene through a transparent capillary die with and without slip was analyzed in this work by rheometrical measurements and particle image velocimetry (PIV). For this reason, a comparison was made between the rheological behaviors of the pure polymer and blended with a small amount of fluoropolymer polymer processing additive. Very good agreement was found between rheometrical and PIV measurements. The pure polymer exhibited stick-slip instabilities with nonhomogeneous slip at the die wall, whereas the blend showed stable flow. The slip velocity was measured directly from the velocity profiles and was negligible for the pure polymer before the stick-slip but increased monotonously as a function of the shear stress for the blend. The flow curves and the slip velocity as a function of the shear stress deviated from a power law and were well fitted by continuous “kink” functions. Comparison of PIV data with rheometrical ones permitted a direct proof of the basic assumption of the Mooney theory. Finally, the analysis of the velocity profiles showed that there is a maximum in the contribution of slip to the average fluid velocity, which is interpreted as the impossibility for the velocity profile to become plug like in the presence of shear thinning.  相似文献   

2.
The rheometry and flow behaviour of aqueous solutions of polyacrylamide and xanthan gum are discussed, with the expectation that the results will be of use in Enhanced Oil Recovery (EOR). The rheometrical study gives particular prominence to the dramatically high values of extensional viscosity which are possible in aqueous solutions of flexible polymers such as polyacrylamide. The effect of such factors as polymer concentration, salt concentration and mechanical degradation on rheometrical properties is outlined. Reference is also made to the qualitatively-different rheometrical behaviour experienced by comparable solutions of xanthan gum.Further evidence is advanced that some dilute polymer solutions of potential use in EOR experience abnormally high resistance in flows which are dominated by extension. Since flow through a porous medium involves a substantial extensional component, it is argued that there is justification for studying the effect of this high extensional-viscosity behaviour in a number of idealized geometries of relevance to EOR conditions. The resulting experiments indicate that, at low flow rates,shear viscosity is the dominant influence, but that, after a critical set of conditions,extensional-viscosity considerations can become all important and the observed pressure losses are against any expectation based on conventional fluid mechanics.Flow visualization studies support the pressure-drop measurements in emphasising the strong influence of high extensional viscosities in flows through tortuous geometries.This paper is dedicated to Professor Hanswalter Giesekus on the occasion of his retirement as Editor of Rheologica Acta.  相似文献   

3.
At higher concentration levels, the inner structure of micellar solutions cannot be detected directly by optical means. Nevertheless, the flow behavior of the micellar solutions reflects their micellar structures. Hence, in this study the material behavior of micellar surfactant solutions was investigated by rheometrical means in steady and oscillatory shear flows. The flow behavior of the solutions was found to be strongly dependent on the concentration of the surfactants. At very low concentrations, the surfactant solution shows Newtonian behavior. With increasing concentration, a transition to shear thinning behavior and increasing viscoelasticity was found. The complex material structure is modeled according to the flow behavior by discrete and continuous relaxation time spectra, depending on the concentration. Received: 3 May 2000/Accepted: 18 September 2000  相似文献   

4.
A novel Navier-Stokes solver based on the boundary integral equation method is presented. The solver can be used to obtain flow solutions in arbitrary 2D geometries with modest computational effort. The vorticity transport equation is modelled as a modified Helmholtz equation with the wave number dependent on the flow Reynolds number. The non-linear inertial terms partly manifest themselves as volume vorticity sources which are computed iteratively by tracking flow trajectories. The integral equation representations of the Helmholtz equation for vorticity and Poisson equation for streamfunction are solved directly for the unknown vorticity boundary conditions. Rapid computation of the flow and vorticity field in the volume at each iteration level is achieved by precomputing the influence coefficient matrices. The pressure field can be extracted from the converged streamfunction and vorticity fields. The solver is validated by considering flow in a converging channel (Hamel flow). The solver is then applied to flow in the annulus of eccentric cylinders. Results are presented for various Reynolds numbers and compared with the literature.  相似文献   

5.
J. M. Dealy 《Rheologica Acta》1982,21(4-5):475-477
Present rheometrical techniques are inadequate for the measurement of viscoelastic properties associated with shearing at high rates. A possible solution to this problem is to use a sliding plate rheometer together with a device for measuring the local wall shear stress away from the ends and edges of the plates. Such a device has been constructed, and the results of preliminary tests are encouraging.  相似文献   

6.
Determination of yield stress fluid behaviour from inclined plane test   总被引:1,自引:0,他引:1  
The aim of this paper is to determine precisely under which conditions an inclined plane can be used as a rheometer, which could represent a practical and rapid technique for various types of industrial or natural viscoplastic coarse suspensions. We first examine its efficiency and relevancy for determining fluid yield stress in a straight way by measuring the deepest fluid layer able to stay on the inclined plane. We have made experiments with different materials (clay-water suspensions) whose yield stress ranged from 35 to 90 Pa, using 1 m long open rectangular channels with a slope ranging from 10 to 30° and a width ranging from 5 to 25 cm. Our procedure involved measuring the final fluid depth far from edges a long time after the end of the slow gravity-induced emptying of a dam placed upstream. The fluid yield stress was also estimated independently by fitting a Herschel-Bulkley model to simple shear rheometry data obtained within a relatively wide shear rate range. A good agreement between inclined rectangular channel tests and independent usual rheometrical tests is obtained even for aspect ratios (flow depth to channel width ratio) as large as 1 when one assumes that, when the fluid has stopped, the side and bottom wall shear stresses are equal to the fluid yield stress. These results prove the efficiency of the inclined plane test for determining yield stress when appropriate experimental precautions are taken for both tests. In addition we examine the possibility of determining the simple shear flow curve of a mud suspension from fluid depth, velocity and discharge measurements of different steady flows in a wide open channel (8 m long; 60 cm wide) equipped with a recirculating system. The results obtained from inclined plane tests are in good agreement with independent rheometrical data (with torsional geometries). However it is technically difficult to cover a wide shear rate range from the inclined plane technique since this requires a rather wide channel flow rate range.  相似文献   

7.
An analysis of the yielding and flow behavior of a model yield-stress fluid, 0.2 wt% Carbopol gel, in a capillary with slip at the wall has been carried out in the present work. For this, a study of the flow kinematics in a capillary rheometer was performed with a two-dimensional particle image velocimetry (PIV) system. Besides, a stress-controlled rotational rheometer with a vane rotor was used as an independent way to measure the yield stress. The results in this work show that in the limit of resolution of the PIV technique, the flow behavior agrees with the existence of a yield stress, but there is a smooth solid?Cliquid transition in the capillary flow curve, which complicates the determination of the yield stress from rheometrical data. This complication, however, is overcome by using the solely velocity profiles and the measured wall shear stresses, from which the yield-stress value is reliably determined. The main details of the kinematics in the presence of slip were all captured during the experiments, namely, a purely plug flow before yielding, the solid?Cliquid transition, as well as the behavior under flow, respectively. Finally, it was found that the slip velocity increases in a power-law way with the shear stress.  相似文献   

8.
The theory of nearly-extensional flow is developed to study the stability of extensional flow. For such flows a simple constitutive equation is derived for slightly disturbed extensional flow when a ‘short memory’ assumption is admissible.Following Minoshima and White and utilizing the constitutive equation obtained, a stability analysis for non-Newtonian fluid sheets is presented. The theoretical analysis presented is specific for an integral consitutive equation. The influence of the fluid elasticity on the stability behaviour is investigated. It is shown that the fluid sheet stability depends upon λk, where λ is the relaxation time and K is the elongation rate.  相似文献   

9.
A theoretical analysis is presented to solve numerically the steady state Navier–Stokes equations, continuity equation and energy equation for a compressible ideal gas flow between two closely spaced, in general nonparallel, infinitely wide plates (siider bearing). The analysis includes the gas inertia effect and covers both non-choked and choked flows. The results of the present analysis compare very well with both analytical and experimental results of compressible flow in a slider bearing comprised of two parallel and stationary plates. It was found that for choked flow the gas inertia effect is important, while the consideration of the energy equation does not affect the accuracy of the calculated flow substantially. Finally, the stiffness of a slider bearing is presented for different geometrical characteristics of the bearing.  相似文献   

10.
In various attempts to relate the behaviour of highly-elastic liquids in complex flows to their rheometrical behaviour, obvious candidates for study have been the variation of shear viscosity with shear rate, the two normal stress differences N1 and N2, especially N1, the extensional viscosity, and the dynamic moduli G′ and G″. In this paper, we shall confine attention to ‘constant-viscosity’ Boger fluids, and, accordingly, we shall limit attention to N1, ηE, G′ and G″.We shall concentrate on the “splashing” problem (particularly that which arises when a liquid drop falls onto the free surface of the same liquid). Modern numerical techniques are employed to provide the theoretical predictions. We show that high ηE can certainly reduce the height of the so-called Worthington jet, thus confirming earlier suggestions, but other rheometrical influences (steady and transient) can also have a role to play and the overall picture may not be as clear as it was once envisaged. We argue that this is due in the main to the fact that splashing is a manifestly unsteady flow. To confirm this proposition, we obtain numerical simulations for the linear Jeffreys model.  相似文献   

11.
船用燃气轮机进气滤清器惯性级内的流场计算和实验验证   总被引:1,自引:0,他引:1  
本文提出了一套求解船用燃气轮机进气滤清器流道流场的数值方法,成功地计算了流道内流场的状态,给出了各种不同型号流道的气动特性,对指导滤清器的设计有较大的现实意义, 在这套方法中,我们应用上风差分来逼近二维、非定常、粘性、不可压缩流体非守恒型的N-S方程,提出了一种可计算雷诺数高达上万的粘性流的差分方程,考察了这种差分方程的稳定性,收敛性、精度和人工粘性,本文还提出了处理一些边界拐点处壁涡的计算方法,实际算例表明,使用本文提出的差分方程和壁涡处理方法给出的计算结果和实验吻合良好。  相似文献   

12.
A theory of a two-point rheometrical method of determination of the weight-average molecular weightM w of polyamide-6 is presented. The method is based on the measurement of the instantaneous values of zero-shear-rate viscosity of the degrading polymer melt, and a formula is derived which enables the calculation of the initial value ofM w (i.e. at zero-residence-time in molten state) of the investigated sample. The experimental verification of the method proves its applicability. The considerations carried out may be regarded as a first step towards developing a theory of an in-line rheometer for a continuous determination ofM w .  相似文献   

13.
A solution for the unsteady-state temperature distribution in a fin of constant area dissipating heat only by convection to an environment of constant temperature, is obtained. The partial differential equation is separated into an ordinary differential equation with position as the independent variable, and a partial differential equation with position and time as the independent variables. The problem is solved for either a step function in temperature or a step function in heat flow rate, for zero time, at one boundary while the other boundary is insulated. The initial condition is taken as an arbitrary constant. The unspecified boundary values (temperature or heat flow rate) are presented for both cases by utilizing dimensionless plots. Experimental verification is presented for the case of constant heat flow rate boundary condition.  相似文献   

14.
The quasilinear form of Richards equation for one-dimensional unsaturated flow in soils can be readily solved for a wide variety of conditions. However, it cannot explain saturated/unsaturated flow and the constant diffusivity assumption, used to linearise the transient quasilinear equation, can introduce significant error. This paper presents a quasi-analytical solution to transient saturated/unsaturated flow based on the quasilinear equation, with saturated flow explained by a transformed Darcy's equation. The procedure presented is based on the modified finite analytic method. With this approach, the problem domain is divided into elements, with the element equations being solutions to a constant coefficient form of the governing partial differential equation. While the element equations are based on a constant diffusivity assumption, transient diffusivity behaviour is incorporated by time stepping. Profile heterogeneity can be incorporated into the procedure by allowing flow properties to vary from element to element. Two procedures are presented for the temporal solution; a Laplace transform procedure and a finite difference scheme. An advantage of the Laplace transform procedure is the ability to incorporate transient boundary condition behaviour directly into the analytical solutions. The scheme is shown to work well for two different flow problems, for three soil types. The technique presented can yield results of high accuracy if the spatial discretisation is sufficient, or alternatively can produce approximate solutions with low computational overheads by using large sized elements. Error was shown to be stable, linearly related to element size.  相似文献   

15.
A numerical method is presented in this paper for the solution of flow field in marine gas turbine air intake filtration channel. The flow field was successfully calculated by this method, and aerodynamic characteristics were obtained for various types of filtration channels. This work is expected to be of practical importance for the design of such filters. Upstream difference was adopted to discretize the non-conservative type N-S equation for two-dimensional, time-dependnet, viscous and incompressible flow, and the stability, convergence, accuracy and artificial viscosity of the resulting difference equation were examined. This equation can be used to calculate viscous flows with Reynolds number up to tens of thousands. Also presented in this paper is a calculation method for treating wall vortex at boundary inflection points. Careful studies show that calculation based on the difference equational and wall vortex treatment proposed here are in good agreement with experimental results.  相似文献   

16.
For large-particulated fluids encountered in natural debris flow, building materials, and sewage treatment, only a few rheometers exist that allow the determination of yield stress and viscosity. In the present investigation, we focus on the rheometrical analysis of the ball measuring system as a suitable tool to measure the rheology of particulated fluids up to grain sizes of 10 mm. The ball measuring system consists of a sphere that is dragged through a sample volume of approximately 0.5 l. Implemented in a standard rheometer, torques exerted on the sphere and the corresponding rotational speeds are recorded within a wide measuring range. In the second part of this investigation, six rheometric devices to determine flow curve and yield stress of fluids containing large particles with maximum grain sizes of 1 to 25 mm are compared, considering both rheological data and application in practical use. The large-scale rheometer of Coussot and Piau, the building material learning viscometer of Wallevik and Gjorv, and the ball measuring system were used for the flow curve determination and a capillary rheometer, the inclined plane test, and the slump test were used for the yield stress determination. For different coarse and concentrated sediment–water mixtures, the flow curves and the yield stresses agree well, except for the capillary rheometer, which exhibits much larger yield stress values. Differences are also noted in the measuring range of the different devices, as well as for the required sample volume that is crucial for application.  相似文献   

17.
A general methodology is presented in order to obtain a hierarchy of high‐order filter functions, starting from the standard top‐hat filter, naturally linked to control volumes flow simulations. The goal is to have a new filtered variable better represented in its high resolved wavenumber components by using a suitable deconvolution. The proposed formulation is applied to the integral momentum equation, that is the evolution equation for the top‐hat filtered variable, by performing a spatial reconstruction based on the approximate inversion of the averaging operator. A theoretical analysis for the Burgers' model equation is presented, demonstrating that the local de‐averaging is an effective tool to obtain a higher‐order accuracy. It is also shown that the subgrid‐scale term, to be modeled in the deconvolved balance equation, has a smaller absolute importance in the resolved wavenumber range for increasing deconvolution order. A numerical analysis of the procedure is presented, based on high‐order upwind and central fluxes reconstruction, leading to congruent control volume schemes. Finally, the features of the present high‐order conservative formulation are tested in the numerical simulation of a sample turbulent flow: the flow behind a backward‐facing step. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
The problem of turbulent flow in a straight circular pipe is solved. We consider a system consisting of the equation of motion, the equation for the turbulence energy, the expression relating the turbulence coefficient with the turbulence scale, and the integral formula for determining the turbulence scale. A numerical solution is presented for this closed system of equations for turbulent flow. The results of calculations are compared with experimental data.  相似文献   

19.
Turbulent two-phase flow equations are derived and solved for fully developed pipe flow using a composite eddy-viscosity model and a new void-fraction equation. The void fraction profile is first specified from experiments and the velocity field is calculated to validate the eddy-viscosity model. Consequently, a new equation is presented for calculation of the void fraction. This void-fraction equation incorporates the gradient of turbulent normal stresses in the radial direction, the conventional lift force, and a contribution from the unsteady drag force. The implications of this new equation, for the bubbly flow regime, are investigated by calculating the void-fraction distribution for a given velocity field. Inclusion of the normal turbulent stresses in the radial direction is shown to simulate correctly the experimentally observed trends of the phase distribution, both for upward and downward bubbly flow, without the need for a fictitious term such as the so called ``lubrication force'. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
The article discusses the problem of determining the secondary steady flow in a plane duct when a sound field is superimposed on an undisturbed compressible laminar flow. It is shown that under certain simplifying conditions the velocity distribution of the secondary flow in the wall region is given by a simple analytical expression. In the rest of the duct the problem is reduced to the solution of a linear fourth-order ordinary differential equation (in complex variables); this problem is solved numerically. The indicated equation is transformed to an Airy equation for large Reynolds numbers Re of the undisturbed flow. The results are presented graphically.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 57–64, March–April, 1976.The author is indebted to V. E. Nakoryakov for valuable comments and interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号