首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reactions of BODIPY monomers with sulfur nucleophiles and electrophiles result in the formation of new BODIPY dimers. Mono‐ and disulfur bridges are established, and the new dyestuff molecules were studied with respect to their structural, optical, and electrochemical properties. X‐ray diffraction analyses reveal individual angulated orientations of the BODIPY subunits in all cases. DFT calculations provide solution conformers of the DYEmers which deviate in a specific manner from the crystallographic results. Clear exciton‐like splittings are observed in the absorption spectra, with maxima at up to 628 nm, in combination with the expected weak fluorescence in polar solvents. A strong communication between the BODIPY subunits was detected by cyclic voltammetry, where two separated one‐electron oxidation and reduction waves with peak‐to‐peak potential differences of 120–400 mV are observed. The qualitative applicability of the exciton model by Kasha for the interpretation of the absorption spectral shape with respect to the conformational state, subunit orientation and distance, and conjugation through the different sulfur bridges, is discussed in detail for the new BODIPY derivatives. This work is part of our concept of DYEmers, where the covalent oligomerisation of BODIPY‐type dye molecules with close distances is leading to new functional dyes with predictable properties.  相似文献   

2.
《Tetrahedron》1996,52(25):8489-8496
Calix[4]arene ethers fixed in the cone conformation and substituted at the upper rim by various urea residues have been synthesized by reaction of the amino calix[4]arenes with isocyanates. Their dimerisation in apolar solvents has been established by the formation of mixed dimers consisting of two different urea derivatives.  相似文献   

3.
Carborane encapsulation was visualized by using fluoroboropyrrole (BODIPY) zwitterionic polymer as fluorescence marker. Firstly, a water-soluble fluorescent probe carrier was prepared by combining the BODIPY derivatives with poly (carboxybetaine methacrylate) (p-CBMA). Two oil-in-water carborane polymers were self-assembled in organic solvents by means of dual ion hydrogen bonding. The ultraviolet and fluorescence spectra were measured with different organic solvents, and the spectra ranged from 531 to 555 nm. The dynamic self-assembly effect was tested by TEM, and the internal microscopic phenomena of the water-soluble polymer were further observed. It was confirmed that two kinds of BODIPY zwitterionic polymers were firmly encase the fat-soluble carborane, forming an oval shape. Carboranes are water-soluble, can achieve biocompatible expression, and can visualize the degree of aggregation in the targeted cells through its own fluorescence effect. Subsequent imaging of the cells showed that both polymers entered the targeted cells.  相似文献   

4.
4—甲基—7—羟基香豆素的发光特性研究   总被引:1,自引:0,他引:1  
李隆弟  金光泽 《分析化学》1994,22(5):440-444
对比考察了多种溶剂介质中不同浓度4-甲基-7-羟基香豆素溶液的荧光光谱特性,发现其谱形状与峰位不仅随溶剂性质而异,且随浓度而变,在某些氢键溶剂中,激发光谱随浓度有很大变化,且发射光谱间存在某种内在联系。基于溶剂本身的性质及4-甲基-7-羟基香豆素在氢键溶剂中的二聚作用讨论了这种现象,本文还考察了这种香豆素衍生物在滤纸及聚酰胺膜基质上,以Pb(Ac)2或Pb(NO3)2作重原子微扰剂时的室温磷光特性  相似文献   

5.
Thermal dimerisation of 3,4-epoxyprecocene II (2b) in absence of solvents afforded high yields (65%) of tetrahydrofuran dimer 4 and minor amounts of benzopyran-3-one 3. On the other hand, two new dimers, γ-hydroxyketone 5 and dioxane 7a have also been isolated from treatment of 2b with different acids. Structural elucidations for all these dimers have been carried out by spectroscopic and analytical methods, combined with the use of selected deuteriated precursors in the corresponding dimerisation procedures.  相似文献   

6.
《化学:亚洲杂志》2017,12(18):2447-2456
Pristine BODIPY compounds have negligible efficiency to generate the excited triplet state and singlet oxygen. In this report, we show that attaching a good electron donor to the BODIPY core can lead to singlet oxygen formation with up to 58 % quantum efficiency. For this purpose, BODIPYs with meso ‐aryl groups (phenyl, naphthyl, anthryl, and pyrenyl) were synthesized and characterized. The fluorescence, excited triplet state, and singlet oxygen formation properties for these compounds were measured in various solvents by UV/Vis absorption, steady‐state and time‐resolved fluorescence methods, as well as laser flash photolysis technique. In particular, the presence of anthryl and pyrenyl showed substantial enhancement on the singlet oxygen formation ability of BODIPY with up to 58 % and 34 % quantum efficiency, respectively, owing to their stronger electron‐donating ability. Upon the increase in singlet oxygen formation, the fluorescence quantum yield and lifetime values of the aryl‐BODIPY showed a concomitant decrease. The increase in solvent polarity enhances the singlet oxygen generation but decreases the fluorescence quantum yield. The results are explained by the presence of intramolecular photoinduced electron transfer from the aryl moiety to BODIPY core. This method of promoting T1 formation is very different from the traditional heavy atom effect by I, Br, or transition metal atoms. This type of novel photosensitizers may find important applications in organic oxygenation reactions and photodynamic therapy of tumors.  相似文献   

7.
The introduction of hydroxy group to the 3-or 5-position of 4,4-difluoro-4-bora-3a,4a-diazaindacene (BODIPY) results in unexpected tautomerization to BDPONa with interesting structural and photophysical properties. The core of BDPONa is an anion with sodium cation as counter-ion. BDPONa displays strong fluorescence in organic solvents.  相似文献   

8.
A 2,6‐distyryl‐substituted boradiazaindacene (BODIPY) dye and a new series of 2,6‐p‐dimethylaminostyrene isomers containing both α‐ and β‐position styryl substituents were synthesized by reacting styrene and p‐dimethylaminostyrene with an electron‐rich diiodo‐BODIPY. The dyes were characterized by X‐ray crystallography and NMR spectroscopy and their photophysical properties were investigated and analyzed by carrying out a series of theoretical calculations. The absorption spectra contain markedly redshifted absorbance bands due to conjugation between the styryl moieties and the main BODIPY fluorophore. Very low fluorescence quantum yields and significant Stokes shifts are observed for 2,6‐distyryl‐substituted BODIPYs, relative to analogous 3,5‐distyryl‐ and 1,7‐distyryl‐substituted BODIPYs. Although the fluorescence of the compound with β‐position styryl substituents on both pyrrole moieties and one with both β‐ and α‐position substituents was completely quenched, the compound with only α‐position substituents exhibits weak emission in polar solvents, but moderately intense emission with a quantum yield of 0.49 in hexane. Protonation studies have demonstrated that these 2,6‐p‐dimethylaminostyrene isomers can be used as sensors for changes in pH. Theoretical calculations provide strong evidence that styryl rotation and the formation of non‐emissive charge‐separated S1 states play a pivotal role in shaping the fluorescence properties of these dyes. Molecular orbital theory is used as a conceptual framework to describe the electronic structures of the BODIPY core and an analysis of the angular nodal patterns provides a reasonable explanation for why the introduction of substituents at different positions on the BODIPY core has markedly differing effects.  相似文献   

9.
Four new boron-dipyrromethenes (BODIPYs) containing dipyrromethanyl substituents at 3,5-positions, bis(3,5-dipyrromethanyl) BODIPYs 5-8, were synthesized by treating their corresponding 3,5-diformyl BODIPYs 1-4 with excess pyrrole under mild acid catalyzed reaction conditions. The compounds 5-8 are stable and freely soluble in common organic solvents. One-dimensional, two-dimensional NMR, high resolution mass spectrometry (HRMS), absorption, fluorescence, and electrochemical techniques were used to characterize the compounds. The spectral and electrochemical studies indicated that dipyrromethanyl groups at 3,5-positions of BODIPY are less electron deficient compared to formyl groups at the same positions. The anion binding studies indicated that bis(3,5-dipyrromethanyl) BODIPY compounds containing four pyrrole NH groups showed preferential binding with F(-) ion over other anions, as confirmed by using NMR, fluorescence, and electrochemical studies.  相似文献   

10.
The temperature‐dependent photophysical properties of a series of 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY) derivatives with different oligo(ethylene glycol) (OEG) dendrons were investigated. Weak fluorescence emission was observed for these BODIPY derivatives in dilute solution with low viscosity. BDP‐G0 and BDP‐G1‐TEG exhibit a high quantum yield in viscous glycerol solutions, contrary to the moderate and little fluorescence enhancement for BDP‐G1 and BDP‐G2 under the same conditions. The photoinduced electron transfer (PET) may have quenched the fluorescence, as supported by calculation. Interestingly, the thermoresponsive BODIPY derivatives show heat‐induced luminescence enhancement with a high signal‐to‐noise ratio and their emission maxima are dependent on the structures of branched tri(ethylene glycol) moieties. Finally, preliminary studies on the BODIPY derivatives as intracellular fluorescence indicators in living HeLa cells were carried out.  相似文献   

11.
The photophysical properties of seven new 8-(p-substituted)phenyl analogues of 4,4-difluoro-3,5-dimethyl-8-(aryl)-4-bora-3a,4a-diaza-s-indacene (derivatives of the well-known fluorophore BODIPY) in several solvents have been studied by means of absorption and steady-state and time-resolved fluorimetry. For each compound, the fluorescence quantum yield and lifetime are lower in solvents with higher polarity owing to an increase in the rate of nonradiative deactivation. Increasing the electron withdrawing strength of the p-substituent on the phenyl group in position 8 also leads to lower fluorescence quantum yields and lifetimes. When the p-substituent on the phenyl group in position 8 is a tertiary amine [8-(4-piperidinophenyl), 8-(4-N,N-dimethylaminophenyl), and 8-(4-morpholinophenyl)], the low quantum yields of these compounds in more polar solvents can be rationalized by the inversion of the energy levels of an apolar, highly fluorescent and a polar, nonfluorescent excited state, where charge transfer from the tertiary amine to the BODIPY unit occurs. These amine analogues can be protonated at low pH in aqueous solution. Fluorescence titrations yielded pK(a) values of their conjugate ammonium salts which are in agreement with the electron donating tendency of the amine group: piperidino (4.15) > dimethylamino (2.37) > morpholino (1.47), with the pK(a) values in parentheses. The rate constant of radiative deactivation (k(f)) is the same for all compounds in all solvents studied (k(f) = 1.4 x 10(8) s(-1)).  相似文献   

12.
Direct oxidative nucleophilic substitution of the 3-hydrogen of BODIPY dyes by pyrrole has been developed under reflux condition under oxygen, from which a series of pyrrolyldipyrrinato BF(2) complexes 1a-h, as extended BODIPYs, have been synthesized. Most of these BODIPYs show strong fluorescence emissions at wavelengths over 600 nm in six solvents of different polarity. Removal of the BF(2) group from BODIPY 1e gave the corresponding free base pyrrolyldipyrrin 7 as an analog of the natural product prodigiosin, in high yield.  相似文献   

13.
Four new dimeric bis(BF(2))-2,2'-bidipyrrins (bisBODIPYs), and their corresponding BODIPY monomers, have been prepared and studied with respect to their structural and photophysical properties. The solid-state molecular structure of the dimers and the relative orientation of the subunits have been revealed by an X-ray diffraction study, which showed that the molecules contain two directly linked BODIPY chromophores in a conformationally fixed, almost orthogonal arrangement. Two of the fluorine atoms are in close contact with each other and the (19)F NMR spectra show a characteristic through-space coupling in solution. The new chromophores all exhibit a clear exciton splitting in the absorption spectra with maxima at about 490 and 560 nm, and are highly luminescent with an intense emission band at around 640 nm. The Stokes shift, which is the difference between the maximum of the lowest-energy absorption band and the maximum of the emission band, has a typical value of 5 to 15 nm for simple BODIPYs, whereas this value increases to 80 nm or more for the dimers, along with a slight decrease in fluorescence quantum yields and lifetimes. These properties indicate potential uses of these new fluorophoric materials as functional dyes in biomedical and materials applications and also in model compounds for BODIPY aggregates.  相似文献   

14.
徐海云  冯翠兰  刘瑛 《应用化学》2011,28(8):949-955
制备了2种新型中位分别为对羟基苯基或苯基取代的含稠合外环的氟硼二吡咯类荧光染料。 研究了它们在极性和非极性溶剂中的吸收光谱及稳态荧光光谱性质。 采用荧光光谱滴定方法研究了它们在CH3CN-H2O溶液中对碱性环境下pH值变化的响应能力。 研究结果表明,当增加染料1溶液的碱性强度时,其荧光被显著淬灭;若将三氟乙酸滴加到该碱性溶液时,被淬灭的荧光又被恢复。 染料1在CH3CN-H2O(体积比1∶1)溶液中,其激发波长为490 nm,发射波长为540 nm,可以作为比较灵敏的碱性环境中的pH荧光探针,其pKa值为10.23。  相似文献   

15.
Calcium (Ca(2+)) fluoroionophores are useful in cell-based functional assays of G-protein coupled receptor (GPCR) activation or ion channel modulation. In this paper we describe new calcium probes that improve or overcome certain deficiencies in existing probes. These new fluoroionophores are based on acylation of amino-BAPTA [BAPTA = glycine, N,N'-(1,2-ethanediyl-bis(oxy-2,1-phenylene)) bis(N-(carboxymethyl))] with fluorescent BODIPY(R) propionates [BODIPY = 4,4-difluoro-5,7-dimethyl- 4-bora-3a,4a-diaza-s-indacene]. The resulting probes show high affinity to aqueous calcium solutions, and respond to calcium binding with significant fluorescence increases. The BODIPY fluorophores are uncharged and their fluorescence is pH-insensitive. The wide range of excitation/emission wavelength choices available within the BODIPY fluorophore series allows several different colors of new calcium indicators to be prepared. Cell permeable versions respond well with increasing fluorescence intensities in live cells after calcium influx.  相似文献   

16.
A series of BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) derivatives containing ion- and pH-sensory units have been successfully designed and synthesized. One of the compounds was structurally characterized by X-ray crystallography. Owing to the presence of an ICT absorption band, one of the compounds was found to show pronounced solvatochromic behavior in different organic solvents. Their emission energies in various solvents show a linear dependence on the Lippert solvent parameter. The cation-binding properties of the complexes with different metal ions (alkali metal, alkaline earth metal and transition metal ions) have been studied using UV-vis and emission spectroscopies. A 1?:?1 complexation to metal ions (Li(+), Na(+), Mg(2+), Ba(2+), Zn(2+), Cd(2+)) was found for the compound with one azacrown moiety in acetonitrile while another one with two azacrown moieties was shown to form 1?:?2 complexes with Zn(2+) and Mg(2+) cations. Their stability constants have been determined by both UV-vis and emission spectrophotometric methods. By introducing triarylborane moieties into the meso position and the 2-position of the BODIPY skeleton, different electronic absorption spectral changes together with an emission diminution were observed in response to fluoride ions. Ditopic binding study of 5, which was functionalized with both azacrown and triarylborane moieties, showed emission enhancement in the presence of Mg(2+) and F(-). These findings suggest that these BODIPY derivatives are capable of serving as versatile colorimetric and luminescence probes for pH, cations and F(-).  相似文献   

17.
Photophysical behaviour of the anionic xanthene dye, eosin Y (EY) was investigated in solvents of different polarities as well as in the presence of aqueous cationic surfactants. From the correlation between E(T)(30) and Kosower Z values of EY in different solvents, subsequent parameters for EY were determined in the presence of surfactants. A red shift, both in the absorption and emission spectra of EY, was observed with decreasing solvent polarity. Dimerisation of EY was found to be dependent on solvent polarity. Cationic surfactants retarded the process of dimerisation, which were evident from the lower dimerisation constant (K(D)) values, compared to that of in pure water. Dye-surfactant interaction constants were determined at different temperatures (298-318 K) and subsequently the thermodynamic parameters, viz., ΔG°, ΔH° and ΔS° were evaluated using the interaction constant values. The fluorescence spectra of EY followed the same trend as in the absorption spectra, although with lesser extents. Stokes shifts were calculated and correlated with the polarity of the medium. Fluorescence of EY was initially quenched by the cationic surfactants in their pre-micellar region, which then followed a red shift with intensity enhancement. Fluorescence quenching was found to be of Stern-Volmer type where the excited state lifetime of EY remained unchanged in different surfactant media. However, the anisotropy value of EY was changed in the post micellar region of surfactants.  相似文献   

18.
The fluorescence lifetime and quantum yield are seen to depend in an unexpected manner on the nature of the solvent for a pair of tripartite molecules composed of two identical boron dipyrromethene (BODIPY) residues attached to a 1,10‐phenanthroline core. A key feature of these molecular architectures concerns the presence of an amide linkage that connects the BODIPY dye to the heterocyclic platform. The secondary amide derivative is more sensitive to environmental change than is the corresponding tertiary amide. In general, increasing solvent polarity, as measured by the static dielectric constant, above a critical threshold tends to reduce fluorescence but certain hydrogen bond accepting solvents exhibit anomolous behaviour. Fluorescence quenching is believed to arise from light‐induced charge transfer between the two BODIPY dyes, but thermodynamic arguments alone do not explain the experimental findings. Molecular modelling is used to argue that the conformation changes in strongly polar media in such a way as to facilitate improved rates of light‐induced charge transfer. These solvent‐induced changes, however, differ remarkably for the two types of amide.  相似文献   

19.
The reductive and oxidative desorption of a BODIPY labeled alkylthiol self-assembled monolayer (SAM) on Au was studied using electrochemical methods coupled with fluorescence microscopy and image analysis procedures to monitor the removal of the adsorbed layer. Two SAMs were formed using two lengths of the alkyl chain (C10 and C16). The BODIPY fluorescent moiety used is known to form dimers which through donor-acceptor energy transfer results in red-shifted fluorescence. Fluorescence from the monomer and dimer were used to study the nature of the desorbed molecules during cyclic step changes in potential. The reductive desorption was observed to occur over a small potential window (0.15 V) signified by an increase in capacitance and in fluorescence. Oxidative readsorption was also observed through a decrease in capacitance and a lack of total removal of the fluorescent layer. Removal by oxidative desorption occurred at positive potentials over a broad potential range near the oxidation of the bare Au. The resulting fluorescence showed that the desorbed molecules remained near the electrode surface and were not dispersed over the 20 s waiting time. The rate of change of the fluorescence for oxidative desorption was much slower than the reductive desorption. Comparing monomer and dimer fluorescence intensities indicated that the dimer was formed on the Au surface and desorbed as a dimer, rather than forming from desorbed monomers near the electrode surface. The dimer fluorescence can only be observed through energy transfer from the excited monomer suggesting that the monomers and dimers must be in close proximity in aggregates near the electrode. The fluorescence yield for longer alkyl chain was always lower presumably due to its decreased solubility in the interfacial region resulting in a more efficient fluorescence quenching. The oxidative desorption process results in a significantly etched or roughened electrode surface suggesting the coupling of thiol oxidative removal and Au oxide formation which results in the removal of Au from the electrode.  相似文献   

20.
We have synthesized four examples of a cyclotriphosphazene ring appended with six boron-dipyrromethene dyes N(3)P(3)(BODIPY)(6) by adopting two different methods. In method I, 1 equiv of N(3)P(3)Cl(6) was treated with 6 equiv of meso-(o- or m- or p-hydroxyphenyl)boron-dipyrromethene in tetrahydrofuran (THF) in the presence of cesium carbonate. This afforded N(3)P(3)(BODIPY)(6) in yields ranging from 80 to 90%. In method II, we first prepared hexakis(p-formylphenoxy)cyclotriphosphazene N(3)P(3)(CHO)(6) by treating 1 equiv of N(3)P(3)Cl(6) with 6 equiv of 4-hydroxybenzaldehyde in the presence of cesium carbonate in THF. In the second step, N(3)P(3)(CHO)(6) was condensed with excess of pyrrole in the presence of catalytic amount of trifluoroacetic acid (TFA) in CH(2)Cl(2) at room temperature and afforded hexakis(p-phenoxy dipyrromethane)cyclotriphosphazene. In the last step, the hexakis(p-phenoxy dipyrromethane)cyclotriphosphazene was first oxidized with 6 equiv of DDQ in CH(2)Cl(2) at room temperature for 1 h followed by neutralization with triethylamine and further reaction with excess BF(3)·Et(2)O afforded the target N(3)P(3)(BODIPY)(6) in 16% yield. The route II was used only for the synthesis of one target compound whereas the route I was used for the synthesis of all four target compounds. The four compounds were characterized by mass, NMR, absorption, electrochemical, and fluorescence techniques. The crystal structure solved for one of the compounds revealed that the P(3)N(3) ring is slightly puckered and the six substituents were not interacting with each other and attained pseudo-axial and pseudo-equatorial positions. The photophysical studies in five different solvents indicated that the compounds exhibit large Stokes' shifts unlike reference monomeric BODIPYs indicating that the compounds are promising for fluorescence bioassays. The quantum yields and lifetimes of compounds 1-4 depends on the type of BODIPY unit attached to the cyclotriphosphazene ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号