首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
研究了一种微生物脂肽--表面活性素与二肉豆蔻酰磷脂酰胆碱(DMPC)在气,液界面形成的混合单分子膜性质.测定了混合单分子膜的表面压.分子面积(л-A)曲线,根据л-A曲线获得了不同表面压下混合单分子膜的过剩面积(Aex)和混合过剩自由能(△Gmex)与混合单分子膜中表面活性素摩尔分数的关系.Aex和△Gmex的计算结果均表明,表面活性素与DMPC在纯水亚相上形成的混合单分子膜中不相容,二者之间 的相互作用主要是排斥力.通过原子力显微镜观察了在表面压15mN/m下的混合单分子膜的LB膜,发现表面活性素与DMPC发生了微相分离,说明二者在混合膜中的烷基链取向不同,这可能是二者发生排斥作用的主要原因之一.此外,还研究了亚相pH对混合单分子膜相容性的影响,发现表面活性素与DMPC在混合单分子膜中的相容性在碱性环境下增强,这可能与二者极性头基之间的相互作用有关.  相似文献   

2.
本文通过Langmuir单层膜的表面压力-平均分子面积(π-A)曲线的测定与分析,分别对髓鞘碱性蛋白(MBP)与细胞膜中不同头部基团脂质分子二棕榈酰基磷脂胆碱(DPPC)和二棕榈酰基磷脂酰乙醇胺(DPPE)在空气/液体界面上的相互作用过程进行了系统研究.实验结果表明:(1)当界面上脂质含量一定时,亚相中随着MBP浓度的增大,DPPC、DPPE单层膜的等温线向平均分子面积较大的方向移动;(2)在单层膜表面压力为10 mN/m时,一个MBP分子分别结合140±3个DPPC分子和100±3个DPPE分子,随着表面压力增大,当MBP分子分别与两种磷脂分子相互作用时,MBP插入到磷脂单层界面的个数逐渐减少;(3)随着蛋白质浓度的增加,脂分子形成的单层膜变得较为疏松,且MBP分子易于插入到分子头部较小的DPPE单层膜中;(4)蛋白质的存在使DPPC单层膜的表面压力逐渐减小,且蛋白质浓度越大表面压力降低越多,DPPC被MBP带入到亚相中越多;(5)对于DPPE单层膜,蛋白质通过与DPPE相互作用插入到界面膜中,引起表面压力增大,且蛋白质浓度越高,压力变化量越大.  相似文献   

3.
应用电化学原位偏振红外反射光谱法研究了构建于金(111)电极表面的浮动磷脂双层膜.金电极表面先自组装一层巯基葡萄糖单层来增加表面的亲水性,浮动磷脂双层膜通过LB-LS技术构建在巯基葡萄糖单层上.双层膜由双肉豆蔻磷脂酰胆碱(DMPC)、胆固醇和神经节苷脂GM1构成.GM1分子中的糖链可以物理吸附在巯基葡萄糖表面,在双层膜和基底间形成一个富含水的隔层.红外光谱表明浮动双层膜中的DMPC分子比传统的支撑双层膜中的DMPC分子有更强的水合作用,证实了双层膜和基底间水层的存在.该浮动双层膜更接近于实际的生物膜体系,并且在金电极表面有宽的电位区间,非常适于进一步的离子通道蛋白质研究.  相似文献   

4.
利用Langmuir-Blodgett(LB)技术制备了不同表面压力下的1,2-二油酸-甘油-3-磷脂酰胆碱(DOPC)/1,2-二棕榈酸甘油-3-磷脂酰胆碱(DPPC)(摩尔比为1:1)和DOPC/DPPC/Chol(摩尔比为2:2:1)单层膜, 对单层膜内分子间的相互作用进行了热力学分析, 并用荧光显微镜和原子力显微镜对其形态进行了观测.热力学分析表明, DOPC与DPPC分子在单层膜结构中相互作用为排斥力, 诱导单层膜出现相变; DOPC, DPPC与胆固醇(Chol)间的相互作用均为吸引力, 当表面压力(π)大于18 mN/m时, DPPC与胆固醇的作用力大于DOPC.荧光显微镜观测表明, DOPC/DPPC单层膜出现明显相分离现象, 富含DPPC微区成“花形”结构, 且随着表面压力的升高微区逐渐增大, “花瓣”增多; 当胆固醇加入到DOPC/DPPC体系时, 单层膜相态由液相与凝胶相共存转变为液态无序相与液态有序相共存结构, 富含DPPC的微区形状从“花形”转变成“圆形”.原子力显微镜对单层膜的表征验证了荧光显微镜的观测结果, 表明胆固醇加入到DOPC/DPPC体系中对单层膜排列具有明显的影响, 压力和溶液状态等是影响脂膜结构的重要因素.  相似文献   

5.
采用孔蛋白(MspA)和双肉豆蔻磷脂酰胆碱(DMPC)在玻碳(GC)基底表面成功构建有仿生特性的纳米通道膜,同时将葡萄糖氧化酶(GOD)修饰于膜上. 使用循环伏安法研究GOD/MspA-DMPC/GC电极的GOD直接电化学过程以及其对氧气和葡萄糖的响应. 研究发现,MspA与DMPC形成的仿生纳米通道膜内,GOD在接近生物体系FAD/FADH标准电位处实现了自身两质子、两电子表面控制的电化学反应. MspA与DMPC的仿生纳米通道膜体系为GOD提供了理想活性环境.  相似文献   

6.
生物膜中脂筏微区结构的动态特征与稳定性决定着生物膜的功能。通过从动物细胞提取脂筏,实验不但观测到质膜微囊烧瓶状凹陷结构,而且还观测到大量的球状和椭球状结构.通过模拟脂筏微区结构,重点对二元体系和三元体系的超分子聚集体结构的多形性进行了研究和探索。研究发现随着表面压力的增加,鞘磷脂和胆固醇双层膜出现了紧密聚集不规则的微区结构,在 SM/Chol/DOPC双层膜中,SM/Chol形成的微区结构漂浮在液态DOPC小颗粒上部。当 DOPE加入到SM/Chol中,三种成份形成不稳定的双层膜结构.Ceramide促进了SM/Chol结构发生重排,微区形状从原来的不规则向着紧密聚集的圆形结构演变;混合单层膜的分子面积与表面吉布斯自由能决定了分子间的相互作用, 当过量分子面积与过量吉布斯自由能为负值时,分子间相互作用表现为吸引力, 出现凝聚现象; 为正值时,分子间相互作用表现为排斥力, 促使单层膜出现相分离现象. 过量吉布斯自由能值越小, 单层膜的热稳定性越高.通过动物细胞提取脂筏与体外模拟脂筏相结合的方法,从超分子水平阐述了脂筏微区结构与功能的生物学意义,为生物膜的研究提供了理论依据和实验支持。  相似文献   

7.
以银纳米粒子自组装层为增强基底,我们报道了一种用于检测二元磷脂膜中具有相似结构磷脂分布的表面增强拉曼成像方法,这种方法具有免标记及花费低廉的优点.对探针分子对巯基苯胺(p-aminothiophenol),实验中所用的银纳米粒子自组装层表现出强的表面增强拉曼活性及良好的重现性.原子力显微镜表征结果证明了完整的磷脂膜在银纳米粒子自组装层上的形成.以这种银自组装层为基底,我们得到了磷脂膜中二肉豆蔻酰磷脂酰甘油(DMPG)和二肉豆蔻酰磷脂酰胆碱(DMPC)的表面增强拉曼光谱,并且利用DMPG的光谱特征峰,1482cm-1,区分这两种磷脂.而通过1482cm-1和1650cm-1的峰强比(R1482/1650),可以同时得知在混合磷脂膜上某点这两种磷脂所占的比例:R1482/1650值的增加意味着DMPG的增加和DMPC的减少.磷脂膜的表面增强拉曼成像则是由R1482/1650值和对应的位置信息组合而得到,其成像结果表明了带电的磷脂DMPG在混合磷脂膜中的聚集.我们所报道的基于表面增强拉曼成像技术的方法提供了一种便利的、免标记的和花费低廉的途径来研究磷脂膜的结构,例如磷脂域和脂阀.  相似文献   

8.
心磷脂(CL)是真核细胞线粒体内膜中的主要磷脂之一.细胞色素C(Cyt c)是线粒体内膜呼吸链的必要成分,与许多疾病有关.本文采用Langmuir-Blodgett技术结合原子力显微镜(AFM)研究了不同量的Cyt c与CL单层膜相互作用的特性.结果表明,Cyt c在CL单层膜上吸附量存在阈值.单层膜在5、10 m N/m膜压时经历压缩扩张循环后,界面分子几乎无损失,但是在20 m N/m膜压时,界面分子出现损失.通过Volmer理论模型定量计算界面分子损失的数量,发现当Cyt c分别为0、2.5、5μL时,界面损失的分子占总分子数的1/1000,当Cyt c分别为10、15μL时,界面损失的分子数占总分子数的1/100.线粒体内膜中Cyt c的缺失或释放会引起某些疾病.因此,探究不同量Cyt c和CL之间的相互作用机理可为线粒体异常引起的疾病提供重要的信息.  相似文献   

9.
通过表面压-分子面积等温线的测定,考察了亚相pH对气水界面上的维生素E(VE)/二棕榈酰基磷脂酰胆碱单分子膜的影响。亚相pH降低不改变DPPC单分子膜的崩裂压,但使VE单分子膜的崩裂压明显增大,不改变VE单分子膜的平均分子面积,但使DPPC单分子膜凝缩,低表面压下,VE对DPPC单分子膜的膨胀作用在纯水上很小,在pH为1的亚相上则很明显,这提示在低pH的亚相上,VE/DPPC单分子膜中的极性头基间  相似文献   

10.
程淑敏  杜林  张秀辉  葛茂发 《化学进展》2021,33(10):1721-1730
被表面活性有机物包裹的液相气溶胶,如海洋飞沫气溶胶(SSA),通常具有反胶束的结构,它由有机分子形成的疏水表面和一个水相内核构成。SSA界面有机膜的组分和形态对其物理、化学和光学特性有重要的影响。Langmuir单分子膜是由脂肪酸、脂肪醇和磷脂等具有低挥发性的长链表面活性有机物在空气-水界面上扩散形成的单层分子薄膜。采用Langmuir槽可以测定水-气界面的单组分或复合组分单分子膜的表面压随分子面积变化的曲线(π-A曲线),从而揭示相应单分子膜的界面特性,进而预测表面活性剂在实际SSA中的命运和行为。本文综述了常用大气气溶胶界面表征技术、基于单分子膜建立的SSA模型以及有机膜对SSA大气行为的影响。虽然目前对SSA相关单分子膜的物理性质和形貌变化已有深入的研究,但是对于反应性气体、光照和生物活性物质等环境因素引起的界面变化却很少有关注,本文为未来的实验室模拟和模式研究提供了新的思路。  相似文献   

11.
The effects of sodium caprate on the gelation of β-lactoglobulin B and a β-lactoglobulin B/β-casein mixture at ambient temperature were investigated using ultrasonic spectroscopy and rheology. A 12% β-lactoglobulin B solution gelled in the presence of 3.6% sodium caprate. Conversely, sodium caprate did not induce the formation of a gel when β-casein was in isolation, regardless of the protein concentration. Although a 6% β-lactoglobulin B/1.8% sodium caprate solution did not form a gel, a gel was formed when 6% β-casein was added to a mixture containing 6% β-lactoglobulin B and 3.6% sodium caprate. This gel showed comparable rheological properties to that of a gel containing 12% β-lactoglobulin B. The results clearly indicated that β-casein aids in the gelation of a β-lactoglobulin B/sodium caprate mixture, when the concentration of β-lactoglobulin B is insufficient to allow for gelation. It appears that β-casein self-aggregation is also inhibited. Therefore, it could be concluded that β-casein can be used as a texture modifier for β-lactoglobulin gelation induced by sodium caprate.  相似文献   

12.
Electrochemical scanning tunneling microscopy (EC-STM) has been applied to study the structure of the film formed by fusion of cholesterol suspensions and mixed dimyristoylphosphatidylcholine (DMPC)/cholesterol vesicles on a Au(111) electrode surface. It has been demonstrated that cholesterol molecules assemble at the gold support into several structures templated by the crystallography of the metal surface and involving flat or edge-on adsorbed molecules. Studies of the film formed by fusion of mixed DMPC/cholesterol vesicles revealed that ordered domains of either pure DMPC or pure cholesterol were formed. These results indicate that, at the metal surface, the molecules released by the rupture of a vesicle initially self-assemble into a well-ordered monolayer. The self-assembly is controlled by the hydrocarbon skeleton-metal surface interaction. In the case of mixed DMPC/cholesterol vesicles, the molecule-metal interactions induce segregation of the two components into single component domains. However, the molecule-metal interaction induced monolayer is a transient phenomenon. When more molecules accumulate at the surface, the molecule-molecule interactions dominate the assembly, and the monolayer is transformed into a bilayer.  相似文献   

13.
《Supramolecular Science》1997,4(3-4):357-363
The formation of a phospholipidic layer was achieved in two steps: (1) a dimyristoyl-l-α-phosphatidic acid (DMPA) Langmuir monolayer was formed by spreading a chloroform/methanol DMPA solution onto an aqueous subphase; after a 10 min period, the monolayer was compressed at 5mNm−1; and (2) keeping the area of the DMPA monolayer constant, a dimyristoyl-l-α-phosphatidylcholine (DMPC) liposomal suspension was added. The progressive incorporation of DMPC molecules into the DMPA monolayer was studied by monitoring the variation of surface pressure with time at constant film area. Three parameters involved in the formation of the interfacial layer DMPA/liposomal DMPC (DMPA/ lip-DMPC) were studied: liposome addition, aqueous subphase composition and initial surface pressure of the DMPA monolayer. The transfer of this mixed layer was controlled through a traceable fluorescent probe incorporated in the liposomes. The thickness and homogeneity of the Langmuir-Blodgett films thus obtained were assessed through Fourier transform infra-red spectroscopy and Nomarski microscopy, respectively. This study shows that the DMPA/lip-DMPC monolayer could be transferred without dragging of aggregates or mesophases.  相似文献   

14.
In this study, a Au(111) electrode is functionalized with a monolayer of 1-thio-β-D-glucose (β-Tg), producing a hydrophilic surface. A monolayer of β-Tg was formed on a Au(111) surface by either (1) potential-assisted deposition with the thiol in a supporting electrolyte or (2) passive incubation of a gold substrate in a thiol-containing solution. For each method, the properties of the β-Tg monolayer were investigated using cyclic voltammetry (CV), differential capacitance (DC), and chronocoulometry. In addition, electrochemical scanning tunneling microscopy (EC-STM) was used to obtain images of the self-assembled monolayer with molecular resolution. Potential-assisted assembly of β-Tg onto a Au(111) electrode surface was found to be complicated by oxidation of β-Tg molecules. The EC-STM images revealed formation of a passive layer containing honeycomb-like domains characteristic of a formation of S(8) rings, indicating the S-C bond may have been cleaved. In contrast, passive self-assembly of thioglucose from a methanol solution was found to produce a stable, disordered monolayer of β-Tg. Since the passive assembly method was not complicated by the presence of a faradaic process, it is the method of choice for modifying the gold surface with a hydrophilic monolayer.  相似文献   

15.
The strategy to concentrate phosphopeptides has become a critical issue for mapping protein phosphorylation sites, which are well known as posttranslational modifications in proteomics. In this study, we propose a simple and highly sensitive method for phosphopeptide enrichment on NiO nanoparticles (NPs) from a trypsin predigested phosphoprotein complex solution in a microwave oven. Furthermore, this technique was combined with centrifugation on-particle ionization/enrichment of phosphopeptides and phosphopeptides were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Weak magnetism of these NPs and a positive surface charge effect at low pH accomplished rapid and selective phosphopeptide enrichment within 30s. Trypsin-digested products of phosphoproteins such as α-casein and β-casein, human blood serum, nonfat milk, and egg white were also investigated to explore their phosphopeptide enrichment from complex samples by this approach. The results demonstrate that NiO NPs exhibit good affinity to trace the phosphopeptides even in the presence of 30 times higher molar concentration of complex solution of non-phosphopeptide proteolytic predigested bovine serum albumin. The detection limits of NiO NPs for α-casein and β-casein were 2.0?×?10(-9) M, with good signal-to-noise ratio in the mass spectrum. NiO NPs were found to be effective and selective for enrichment of singly and multiply phosphorylated peptides at a trace level in complex samples in a microwave oven. The cost of preparing NiO NPs is low, the NiO NPs are thermally stable, and therefore, they hold great promise for use in phosphopeptide enrichment.  相似文献   

16.
We applied methods of measurement Maxwell displacement current (MDC) pressure-area isotherms and dipole potential for analysis of the properties of gramicidin A (gA) and mixed gA/DMPC monolayers at an air-water interface. The MDC method allowed us to observe the kinetics of formation of secondary structure of gA in monolayers at an air-water interface. We showed, that secondary structure starts to form at rather low area per molecule at which gA monolayers are in gaseous state. Changes of the MDC during compression can be attributed to the reorientation of dipole moments in a gA double helix at area 7 nm(2)/molecule, followed by the formation of intertwined double helix of gA. The properties of gA in mixed monolayers depend on the molar fraction of gA/DMPC. At higher molar fractions of gA (around 0.5) the shape of the changes of dipole moment of mixed monolayer was similar to that for pure gA. The analysis of excess free energy in a gel (18( ) degrees C) and in a liquid-crystalline phase (28( ) degrees C) allowed us to show influence of the monolayer structural state on the interaction between gA and the phospholipids. In a gel state and at the gA/DMPC molar ratio below 0.17 the aggregates of gA were formed, while above this molar ratio gA interacts favorably with DMPC. In contrast, for DMPC in a liquid-crystalline state aggregation of gA was observed for all molar fractions studied. The effect of formation ordered structures between gA and DMPC is more pronounced at low temperatures.  相似文献   

17.
The mechanisms of interactions between gramicidin A (gA) and dimyristoylphosphatidylcholine (DMPC) in monolayers formed at the air-water interface were studied by analyzing their mechanical, thermodynamical, and electrical properties evaluated from measurements of pressure-area isotherms and of Maxwell displacement currents (MDC). A contactless method of recording MDC enabled us to monitor changes in the charge state of the monolayer-constituting molecules and to find the relation between a phase state of the monolayer and structural transitions of gA. The peptide-lipid interactions were quantified in terms of the excess of Gibbs free energy, excess entropy, as well as the molecular dipole moments at various gA/DMPC molar ratios, at various temperatures (in the gel phase and also in the liquid-crystalline phase of DMPC molecule), and at various surface pressures. It was found that the strongest interactions between gA and DMPC took place at the gA/DMPC molar ratio at around 0.25. At this monolayer composition, the phospholipids, via their carbonyl moieties, dominantly interact with the single helical gA, which mostly stands upright on the surface and is anchored by its C-terminus to the water surface, and prevent the formation of the intertwined helical gA dimers. The optimum ratio was confirmed also by anomalous electrical behavior of electrical dipole moments derived from MDC measurements.  相似文献   

18.
Amphiphilic block copolymers and mixtures of amphiphiles find broad applications in numerous technologies, including pharma, food, cosmetic and detergency. Here we report on the interactions between a biological charged diblock copolymer, β-casein, and a synthetic uncharged triblock copolymer, Lutrol F-127 (EO(101)PO(56)EO(101)), on their mixed micellization characteristics and the micelles' structure and morphology. Isothermal titration calorimetry (ITC) experiments indicate that mixed micelles form when Lutrol is added to monomeric as well as to assembled β-casein. The main driving force for the mixed micellization is the hydrophobic interactions. Above β-casein CMC, strong perturbations caused by penetration of the hydrophobic oxypropylene sections of Lutrol into the protein micellar core lead to disintegration of the micelles and reformation of mixed Lutrol/β-casein micelles. The negative enthalpy of micelle formation (ΔH) and cooperativity increase with raising β-casein concentration in solution. ζ-potential measurements show that Lutrol interacts with the protein micelles to form mixed micelles even below its critical micellization temperature (CMT). They further indicate that Lutrol effectively masks the protein charges, probably by forming a coating layer of the ethyleneoxide rich chains. Small-angle X-ray scattering (SAXS) and cryogenic-transmission electron microscopy (cryo-TEM) indicate relatively small changes in the oblate micellar shape, but do show swelling along the small axis of β-casein micelles in the presence of Lutrol, thereby confirming the formation of mixed micelles.  相似文献   

19.
X-ray reflectivity from an air-buffer interfacial β-casein monomolecular film placed on a solution of chymosin (renin) showed unexpectedly slow proteolytic cleavage. To understand this, the separate structures of β-casein and chymosin, the presentation of each molecule to the other at the air/liquid interface, and that of their mixtures is reported. At the air/solution interface, the hydrophobicity of the protein molecules causes orientation and some deformation of the conformation. When β-casein was presented to a chymosin monomolecular interfacial film, the chymosin was largely displaced from the surface, which was accounted for by the different surfactancy of the two molecules at 25 °C. There was no observable proteolysis. In the reverse experiment, a significant enzymatic degradation and the signature of hydrophobic fragments was observed but only at and above an enzyme concentration of 0.015 mg/mL in the substrate. For comparison, the air/solution interface of premixed β-casein with chymosin in phosphate buffer showed that the film was composed of β-casein proteolytic fragments and chymosin.  相似文献   

20.
The influence of selected perfluorinated compounds (PFCs), perfluorooctanoic acid (PFOA) or perfluorooctanesulfonic acid (PFOS), on the structure and organization of lipid membranes was investigated using model membranes-lipid monolayers and bilayers. The simplest model--a lipid monolayer--was studied at the air-water interface using the Langmuir-Blodgett technique with surface pressure and surface potential measurements. Lipid bilayers were characterized by NMR techniques and molecular dynamics simulations. Two phospholipids, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), characterized by different surface properties have been chosen as components of the model membranes. For a DPPC monolayer, a phase transition from the liquid-expanded state to the liquid-condensed state can be observed upon compression at room temperature, while a DMPC monolayer under the same conditions remains in the liquid-expanded state. For each of the two lipids, the presence of both PFOA and PFOS leads to the formation of a more fluidic layer at the air-water interface. Pulsed field gradient NMR measurements of the lateral diffusion coefficient (DL) of DMPC and PFOA in oriented bilayers reveal that, upon addition of PFOA to DMPC bilayers, DL of DMPC decreases for small amounts of PFOA, while larger additions produce an increased DL. The DL values of PFOA were found to be slightly larger than those for DMPC, probably as a consequence of the water solubility of PFOA. Furthermore, 31P and 2H NMR showed that the gel-liquid crystalline phase transition temperature decreased by the addition of PFOA for concentrations of 5 mol % and above, indicating a destabilizing effect of PFOA on the membranes. Deuterium order parameters of deuterated DMPC were found to increase slightly upon increasing the PFOA concentration. The monolayer experiments reveal that PFOS also penetrates slowly into already preformed lipid layers, leading to a change of their properties with time. These experimental observations are in qualitative agreement with the computational results obtained from the molecular dynamics simulations showing a slow migration of PFCs from the surrounding water phase into DPPC and DMPC bilayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号