首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mononuclear (Me3TACN)MnX3 compounds, where X is Cl, Br, or N3, and Me3TACN is 1,4,7-N,N′,N″-trimethyl-1,4,7-triazacyclononane, have been tested for catalyzing both sulfide oxygenation and styrene epoxidation by tert-butyl hydroperoxide (TBHP) and display turnover frequencies (TOF) up to 200 h−1 at room temperature. Sulfoxides or sulfones may be produced selectively by varying reaction conditions. Product distribution from the oxygenation reactions of ethyl phenyl sulfide, 2-chloroethyl phenyl sulfide, and styrene is consistent with a mechanism involving an early single-electron transfer (SET) step.  相似文献   

2.
Thin crystals of La2O3, LaAlO3, La2/3TiO3, La2TiO5, and La2Ti2O7 have been irradiated in situ using 1 MeV Kr2+ ions at the Intermediate Voltage Electron Microscope-Tandem User Facility (IVEM-Tandem), Argonne National Laboratory (ANL). We observed that La2O3 remained crystalline to a fluence greater than 3.1×1016 ions cm−2 at a temperature of 50 K. The four binary oxide compounds in the two systems were observed through the crystalline-amorphous transition as a function of ion fluence and temperature. Results from the ion irradiations give critical temperatures for amorphisation (Tc) of 647 K for LaAlO3, 840 K for La2Ti2O7, 865 K for La2/3TiO3, and 1027 K for La2TiO5. The Tc values observed in this study, together with previous data for Al2O3 and TiO2, are discussed with reference to the melting points for the La2O3-Al2O3 and La2O3-TiO2 systems and the different local environments within the four crystal structures. Results suggest that there is an observable inverse correlation between Tc and melting temperature (Tm) in the two systems. More complex relationships exist between Tc and crystal structure, with the stoichiometric perovskite LaAlO3 being the most resistant to amorphisation.  相似文献   

3.
A mild and efficient method for the copper-catalyzed arylation of phenylurea is described. The coupling reaction of phenylurea with different functionalized aryl iodides in the presence of air stable CuI, N,N′-dibenzylethylenediamine as a ligand, and KF/Al2O3 as a base gives symmetrical and unsymmetrical diarylureas in relatively high yields.  相似文献   

4.
PdCl2(PPh3)2 reacted with NaOAr (Ar = Ph, p-tolyl) at 0 °C to afford PdCl(Ph)(PPh3)2, instead of PdCl(OAr)(PPh3)2, in 12-16% isolated yields based on Pd. The structure was confirmed by NMR and X-ray crystallography. GC-MS analysis of the reaction solution revealed that OPPh2(OAr), OPPh(OAr)2, and OP(OAr)3 are formed, while NMR studies indicated that PdCl(Ph)(PPh3)2 is produced when PdCl(OAr)(PPh3)2 decomposes. The reaction of PdCl2(PPh3)2 with Bu3Sn(OC6H4-p-OMe) also gave PdCl(Ph)(PPh3)2 in 8% isolated yield. These results suggest that PdCl(OAr)(PPh3)2 is highly labile and the aryloxy ligand exchanges with the phenyl groups in triphenylphosphine even under very mild conditions.  相似文献   

5.
Three new N2S2 donor ligands 1,1′-((2-(2-(phenylthio)phenylthio)phenyl)methylene)bis(3,5-R-1H-pyrazole), R = H (LH), R = Me (LMe), R = i-Pr (Li-Pr) have been prepared and characterized. These bifunctional ligands incorporate two distinct chelate donor systems, by virtue of the presence of bispyrazole and bisthioether functions. The preferred conformation of these ligands is such that the N2 and S2 donor moieties may be oriented in opposite directions, thus favoring the formation of molecular chains when treated with AgBF4. The X-ray structures of Ag(I) complexes show that, depending on the steric hindrance present on the pyrazole rings, these ligands behave as κ4-SSNN-μ bridging tetradentate (when R = H), or κ3-SNN-μ bridging tridentate (when R = Me, i-Pr). Interestingly, [Ag(LH)]BF4 crystallizes in the chiral space group P41, with the molecular chain that is folded around the 41 screw axis.  相似文献   

6.
The two new compounds, Sr4Cu3(AsO4)2(AsO3OH)4·3H2O (1) and Ba2Cu4(AsO4)2(AsO3OH)3(2), were synthesized under hydrothermal conditions. They represent previously unknown structure types and are the first compounds synthesized in the systems SrO/BaO-CuO-As2O5-H2O. Their crystal structures were determined by single-crystal X-ray diffraction [space group C2/c, a=18.536(4) Å, b=5.179(1) Å, c=24.898(5) Å, β=93.67(3)°, V=2344.0(8) Å3, Z=4 for 1; space group P42/n, a=7.775(1) Å, c=13.698(3) Å, V=828.1(2) Å3, Z=2 for 2]. The crystal structure of 1 is related to a group of compounds formed by Cu2+-(XO4)3− layers (X=P5+, As5+) linked by M cations (M=alkali, alkaline earth, Pb2+, or Ag+) and partly by hydrogen bonds. In 1, worth mentioning is the very short hydrogen bond length, D···A=2.477(3) Å. It is one of the examples of extremely short hydrogen bonds, where the donor and acceptor are crystallographically different. Compound 2 represents a layered structure consisting of Cu2O8 centrosymmetric dimers crosslinked by As1φ4 tetrahedra, where φ is O or OH, which are interconnected by Ba, As2 and hydrogen bonds to form a three-dimensional network. The layers are formed by Cu2O8 centrosymmetric dimers of CuO5 edge-sharing polyhedra, crosslinked by As1O4 tetrahedra. Vibrational spectra (FTIR and Raman) of both compounds are described. The spectroscopic manifestation of the very short hydrogen bond in 1, and ABC-like spectra in 2 were discussed.  相似文献   

7.
通过沉积法和离子交换法成功地制备了Ag_3PO_4/Ag_2S/g-C_3N_4复合型光催化剂。利用X射线多晶粉末衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、N_2吸附-脱附等温线、紫外-可见漫反射光谱、荧光光谱等手段对样品进行了表征。通过降解罗丹明B考察其可见光催化活性及稳定性,研究了硫化钠与磷酸银物质的量的比值(n_(Na_2S)/n_(Ag_3PO_4))、g-C_3N_4添加量对所制备复合光催化材料性能的影响,同时对光催化机理进行了探讨。结果表明,随着n_(Na2S)/n_(Ag3PO4)的增加,所得复合催化材料活性先增加后降低;当n_(Na2S)/n_(Ag_3PO_4)为1.5%、g-C_3N_4与Ag_3PO_4的质量比为3∶7时制备的催化剂ASC1.5的光催化活性最好,在可见光照射下,40 min内可将罗丹明B完全降解,且5次循环使用后仍保持较高的催化活性。和Ag_3PO_4相比,Ag_3PO_4/Ag_2S/g-C_3N_4复合型光催化材料的活性与稳定性都得到明显提高,这主要归因于复合催化剂比表面积和孔结构的增加,载流子分离效率的提高。光催化机理研究表明,空穴(h~+)、超氧阴离子自由基(·O~(2-))和羟基自由基(·OH)都是光催化过程中的主要活性物种。三者作用大小依次为:h~+·O~(2-)·OH。  相似文献   

8.
9.
A new borate, Cs2Al2B2O7, was synthesized by solid-state reaction. It crystallizes in the monoclinic space group P21/c with a=6.719(1) Å, b=7.121(1) Å, c=9.626(3) Å, β=115.3(1)°, and Z=2. In the structure, two AlO4 tetrahedra and two BO3 planar triangles are connected alternately by corner-sharing to from nearly planar [Al2B2O10] rings, which are further linked via common O1 atom to generate layers in the bc plane. These layers then share the O3 atoms lying on a center of inversion to form a three-dimensional framework with Cs atoms residing in the channels. The IR spectrum confirms the presence of both BO3 and AlO4 groups and the UV-vis-IR diffuse reflectance spectrum indicates a band gap of about 4.13(2) eV.  相似文献   

10.
The structure of Cu2Fe2Ge4O13, previously thought to be CuFeGe2O6, has been determined from single-crystal X-ray diffraction data to be monoclinic, P21/m, a=12.1050(6), b=8.5073(4), c=4.8736(2) Å, β=96.145(1)°, Z=2, with R1=0.0231 and wR2=0.0605. The unique structure has an oligomer of four germanate tetrahedra, cross-linked laterally by square-planar copper ions, joined end-to-end by a zigzag chain of edge-sharing iron oxide octahedra. Running along the a-direction the metal oxide chain consists of alternating Cu-Cu and Fe-Fe dimers. A hypothetical series of homologous structures (Cun−2Fe2GenO3n+1 with n=3,4,…,∞) with different length germanate oligomers is proposed, where as n increases, the infinite chain of the CuGeO3 is approached. In this context, Cu2Fe2Ge4O13 is viewed as being built from blocks of CuGeO3 and the Fe oxide chains. This material has significance to the study of low-dimensional mixed-spin systems.  相似文献   

11.
Hydrothermal synthesis in the K-Mo oxide system was investigated as a function of the pH of the reaction medium. Four compounds were formed, including two K2Mo4O13 phases. One is a new low-temperature polymorph, which crystallizes in the orthorhombic, space group Pbca, with Z=8 and unit cell dimensions a=7.544(1) Å, b=15.394(2) Å, c=18.568(3) Å. The other is the known triclinic K2Mo4O13, whose structure was re-determined from single crystal data; its cell parameters were determined as a=7.976(2) Å, b=8.345(2) Å, c=10.017(2) Å, α=107.104(3)°, β=102.885(3)°, γ=109.760(3)°, which are the standard settings of the crystal lattice. The orthorhombic phase converts endothermically into triclinic phase at ca. 730 K with a heat of transition of 8.31 kJ/mol.  相似文献   

12.
Two novel N,N′-dialkylimidazolium thiocyanate-cadmium complexes [(R2Im)2][Cd2(SCN)6] for R=Me (3), and cyclohexyl (4) have been synthesized and characterized by single-crystal X-ray diffraction. Compound 3 crystallizes in the monoclinic unit cell dimensions of 17.468(3), 7.7273(12), 10.6750(16) Å, 104.833(2)°, and space group C2 with two [(Me2Im)2] [Cd2(SCN)6] per unit cell. The two cadmium atoms in 3 are octahedrally coordinated in 4N2S and 2N4S coordination environment, and linking into one-dimensional zigzag chains. Compound 4 belongs to the monoclinic space group Cc with unit cell of dimensions 13.3049(12), 17.5550(16), 20.8012(19) Å, 101.494(2)°, and four [(Cy2Im)2][Cd2(SCN)6]·C3H6O per unit cell. The cadmium atoms in 4 are all 3N3S hexa-coordinated with six bridging SCN ions in an fac configuration and form infinite zigzag polymeric chains. The infinite chains in 3 form an approximate hexagonal array, making triangular channels which are occupied by N,N′-dimethylimidazolium ions, whereas the chains in 4 form layered structure, and the layers are stacked perpendicularly with respect to the orientation of the infinite anionic chains alternatively. N,N′-dicyclohexylimidazolium cations and solvent molecules fill in between layers.  相似文献   

13.
Phase transitions in MgAl2O4 were examined at 21-27 GPa and 1400-2500 °C using a multianvil apparatus. A mixture of MgO and Al2O3 corundum that are high-pressure dissociation products of MgAl2O4 spinel combines into calcium-ferrite type MgAl2O4 at 26-27 GPa and 1400-2000 °C. At temperature above 2000 °C at pressure below 25.5 GPa, a mixture of Al2O3 corundum and a new phase with Mg2Al2O5 composition is stable. The transition boundary between the two fields has a strongly negative pressure-temperature slope. Structure analysis and Rietveld refinement on the basis of the powder X-ray diffraction profile of the Mg2Al2O5 phase indicated that the phase represented a new structure type with orthorhombic symmetry (Pbam), and the lattice parameters were determined as a=9.3710(6) Å, b=12.1952(6) Å, c=2.7916(2) Å, V=319.03(3) Å3, Z=4. The structure consists of edge-sharing and corner-sharing (Mg, Al)O6 octahedra, and contains chains of edge-sharing octahedra running along the c-axis. A part of Mg atoms are accommodated in six-coordinated trigonal prism sites in tunnels surrounded by the chains of edge-sharing (Mg, Al)O6 octahedra. The structure is related with that of ludwigite (Mg, Fe2+)2(Fe3+, Al)(BO3)O2. The molar volume of the Mg2Al2O5 phase is smaller by 0.18% than sum of molar volumes of 2MgO and Al2O3 corundum. High-pressure dissociation to the mixture of corundum-type phase and the phase with ludwigite-related structure has been found only in MgAl2O4 among various A2+B3+2O4 compounds.  相似文献   

14.
The reactions of [RuH(CO)Cl(PPh3)3] with N,N-bis(salicylidine)-hydrazine (H2bsh) and N,N-bis(salicylidine)-p-phenylene diammine (H2bsp) in presence of KOH in methanol led in the formation of neutral mononuclear complexes with the formulations [RuH(CO)(PPh3)2(L)] (LHbsh or Hbsp). These present the first examples where the ligands H2bsh or H2bsp provide only two of its available donor sites for interaction with the metal centre. The complexes have been characterized by elemental analyses, FAB-MS, IR, 1H, 13C, 31P NMR and electronic spectral studies. Molecular structure of the representative complex [RuH(CO)(PPh3)2(Hbsh)] have been determined by single crystal X-ray analysis.  相似文献   

15.
The NaCdVO4-Cd3V2O8 and CdO-V2O5 sections of the ternary system Na2O-CdO-V2O5 have been studied and the crystal structures of Cd3V2O8 and Cd18V8O38 compounds were determined from single-crystal X-ray diffraction data. Cd3V2O8 crystallizes with the maricite-type structure in space group Pnma, a=9.8133(10) Å, b=6.9882(10) Å, c=5.3251(10) Å and Z=4, whereas Cd18V8O38 crystallizes in space group P1 with a new-type structure, a=8.5761(14), b=8.607(3), c=12.896(2) Å, α=95.64(1), β=102.45(1), γ=108.42(1)° and Z=1. The Cd3V2O8 structure is made up of Cd1O4 infinite chains of edge-sharing Cd1O6 octahedra which are parallel to the b direction. The Cd1O4 chains are linked together by VO4 tetrahedra and strongly distorted Cd2O4 tetrahedra. The structure of Cd18V8O38 is based on an ordered three-dimensional framework of cadmium and vanadium polyhedra that share corners. The distorted CdO6 octahedra, CdO5 trigonal bipyramids and CdO5 square pyramids share corners, edges or faces.  相似文献   

16.
Single crystals of CeAu4Si2 and CeAu2Si2 have been grown out of ternary fluxes rich in Au, and the former, also by sintering the stoichiometric composition at 750 °C. The single-crystal X-ray refinement result for CeAu4Si2 is orthorhombic, Cmmm (No. 65, Z=2), different from a tetragonal result found from an X-ray powder diffraction refinement [H. Nakashima, et al., J. Alloys Compds. 424 (2006) 7]. For CeAu2Si2, this is the first report of the stoichiometric crystalline phase, in the known tetragonal I4/mmm structure. The anisotropic field- and temperature-dependent magnetizations, as well as specific heat and resistivity data are compared. Although both compounds have related structural packing, they present unique magnetic features. CeAu2Si2 is a typical antiferromagnet with TN=8.8(1) K and CeAu4Si2 features a ferromagnetic component below Tc=3.3(1) K. Both phases have effective moments close in value to that of free Ce3+.  相似文献   

17.
Two new compounds, La3Ru8B6 and Y3Os8B6, were synthesized by arc melting the elements. Their structural characterization was carried out at room temperature on as-cast samples by using X-ray diffractometry. According to X-ray single-crystal diffraction results these borides crystallize in Fmmm space group (no. 69), Z=4, a=5.5607(1) Å, b=9.8035(3) Å, c=17.5524(4) Å, ρ=8.956 Mg/m3, μ=25.23 mm−1 for La3Ru8B6 and a=5.4792(2) Å, b=9.5139(4) Å, c=17.6972(8) Å, ρ=13.343 Mg/m3, μ=128.23 mm−1 for Y3Os8B6. The crystal structure of La3Ru8B6 was confirmed from Rietveld refinement of X-ray powder diffraction data. Both La3Ru8B6 and Y3Os8B6 compounds are isotypic with the Ca3Rh8B6 compound and their structures are built up from CeCo3B2-type and CeAl2Ga2-type structural fragments taken in ratio 2:1. They are the members of structural series R(A)nM3n−1B2n with n=3 (R is the rare earth metal, A the alkaline earth metal, and M the transition metal). Structural and atomic parameters were also obtained for La0.94Ru3B2 compound from Rietveld refinement (CeCo3B2-type structure, P6/mmm space group (no. 191), a=5.5835(9) Å, c=3.0278(6) Å).  相似文献   

18.
An experimental study on the conversion of NO in the NO/N2, NO/O2/N2, NO/C2H4/N2 and NO/C2H4/O2/N2 systems has been carried out using dielectric barrier discharge (DBD) plasmas at atmospheric pressure. In the NO/N2 system, NO decomposition to N2 and O2 is the dominating reaction; NO conversion to NO2 is less significant. O2 produced from NO decomposition was detected by an on-line mass spectrometer. With the increase of NO initial concentration, the concentration of O2 produced decreases at 298 K, but slightly increases at 523 K. In the NO/O2/N2 system, NO is mainly oxidized to NO2, but NO conversion becomes very low at 523 K and over 1.6% of O2. In the NO/C2H4/N2 system, NO is reduced to N2 with about the same NO conversion as that in the NO/N2 system but without NO2 formation. In the NO/C2H4/O2/N2 system, the oxidation of NO to NO2 is dramatically promoted. At 523 K, with the increase of the energy density, NO conversion increases rapidly first, and then almost stabilizes at 93–91% of NO conversion with 61–55% of NO2 selectivity in the energy density range of 317–550 J L−1. It finally decreases gradually at high energy density. A negligible amount of N2O is formed in the above four systems. Of the four systems studied, NO conversion and NO2 selectivity of the NO/C2H4/O2/N2 system are the highest, and NO/O2/C2H4/N2 system has the lowest electrical energy consumption per NO molecule converted.  相似文献   

19.
Three new compounds Ca(HF2)2, Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) were obtained in the system metal(II) fluoride and anhydrous HF (aHF) acidified with excessive PF5. The obtained polymeric solids are slightly soluble in aHF and they crystallize out of their aHF solutions. Ca(HF2)2 was prepared by simply dissolving CaF2 in a neutral aHF. It represents the second known compound with homoleptic HF environment of the central atom besides Ba(H3F4)2. The compounds Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) represent two additional examples of the formation of a polymeric zigzag ladder or ribbon composed of metal cation and fluoride anion (MF+)n besides PbF(AsF6), the first isolated compound with such zigzag ladder. The obtained new compounds were characterized by X-ray single crystal diffraction method and partly by Raman spectroscopy. Ba4F4(HF2)(PF6)3 crystallizes in a triclinic space group P1¯ with a=4.5870(2) Å, b=8.8327(3) Å, c=11.2489(3) Å, α=67.758(9)°, β=84.722(12), γ=78.283(12)°, V=413.00(3) Å3 at 200 K, Z=1 and R=0.0588. Pb2F2(HF2)(PF6) at 200 K: space group P1¯, a=4.5722(19) Å, b=4.763(2) Å, c=8.818(4) Å, α=86.967(10)°, β=76.774(10)°, γ=83.230(12)°, V=185.55(14) Å3, Z=1 and R=0.0937. Pb2F2(HF2)(PF6) at 293 K: space group P1¯, a=4.586(2) Å, b=4.781(3) Å, c=8.831(5) Å, α=87.106(13)°, β=76.830(13)°, γ=83.531(11)°, V=187.27(18) Å3, Z=1 and R=0.072. Ca(HF2)2 crystallizes in an orthorhombic Fddd space group with a=5.5709(6) Å, b=10.1111(9) Å, c=10.5945(10) Å, V=596.77(10) Å3 at 200 K, Z=8 and R=0.028.  相似文献   

20.
The compound previously reported as Ba2Ti2B2O9 has been reformulated as Ba3Ti3B2O12, or Ba3Ti3O6(BO3)2, a new barium titanium oxoborate. Small single crystals have been recovered from a melt with a composition of BaTiO3:BaTiB2O6 (molar ratio) cooled between 1100°C and 850°C. The crystal structure has been determined by X-ray diffraction: hexagonal system, non-centrosymmetric space group, a=8.7377(11) Å, c=3.9147(8) Å, Z=1, wR(F2)=0.039 for 504 unique reflections. Ba3Ti3O6(BO3)2 is isostructural with K3Ta3O6(BO3)2. Preliminary measurements of nonlinear optical properties on microcrystalline samples show that the second harmonic generation efficiency of Ba3Ti3O6(BO3)2 is equal to 95% of that of LiNbO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号