首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In recent years, due to its high hole-mobility, high on/off current ratio and low threshold voltage, pentacene and its derivatives have found increasing application in the fabrication of light-emitting diodes, field-effect transistors and photovoltaic cells. It has also emerged as an alternative to silicon due to its similar performance to inorganic semiconductors. Pentacene cannot be isolated from the petroleum fractions like other acenes such as anthracene or tetracene, and therefore it needs to be chemically synthesized. The first successful synthesis of pentacene was reported in early 19th century where pentacene was obtained via dehydrogenation of 6,14-dihydropentacene. Since then a number of methods have been reported for the synthesis of pentacene. This review describes various strategies used for the synthesis of pentacene and its derivatives reported since 2005.  相似文献   

2.
The high reactivity of acenes can reduce their potential applications in the field of molecular electronics. Although pentacene is an important material for use in organic field-effect transistors because of its high charge mobility, its reactivity is a major disadvantage hindering the development of pentacene applications. In this study, several reaction pathways for the thermal dimerization of acenes were considered computationally. The formation of acene dimers via a central benzene ring and the formation of acene-based polymers were found to be the preferred pathways, depending on the length of the monomer. Interestingly, starting from hexacene, acene dimers are thermodynamically disfavored products, and the reaction pathway is predicted to proceed instead via a double cycloaddition reaction (polymerization) to yield acene-based polymers. A concerted asynchronous reaction mechanism was found for benzene and naphthalene dimerization, while a stepwise biradical mechanism was predicted for the dimerization of anthracene, pentacene, and heptacene. The biradical mechanism for dimerization of anthracene and pentacene proceeds via syn or anti transition states and biradical minima through stepwise biradical pathways, while dimerization of heptacene proceeds via asynchronous ring closure of the complex formed by two heptacene molecules. The activation barriers for thermal dimerization decrease rapidly with increasing acene chain length and are calculated (at M06-2X/6-31G(d)+ZPVE) to be 77.9, 57.1, 33.3, -0.3, and -12.1 kcal/mol vs two isolated acene molecules for benzene, naphthalene, anthracene, pentacene, and heptacene, respectively. If activation energy is calculated vs the initially formed complex of two acene molecules, then the calculated barriers are 80.5, 63.2, 43.7, 16.7, and 12.3 kcal/mol. Dimerization is exothermic from anthracene onward, but it is endothermic at the terminal rings, even for heptacene. Phenyl substitution at the most reactive meso-carbon atoms of the central ring of acene blocks the reactivity of this ring but does not efficiently prevent dimerization through other rings.  相似文献   

3.
The UV absorption spectrum of pentacene in hexane solution and the diffuse UV reflectance spectrum for its solid sample have been obtained. A spectral band due to structural features resulting from intermolecular interactions in the solid state was detected for the solid sample at the energy of 1.51 eV. The types of detected electronically excited states for pentacene have been determined, and dominating electronic configurations have been interpreted using TD B3LYP/6-31G quantum-chemical calculations. The types of pentacene occupied and unoccupied molecular orbitals involved in electronic transitions have been determined from published photoelectron spectroscopy data for pentacene with the preliminary assignment of the relevant photoionization bands using the B3LYP/6-31G calculation method.  相似文献   

4.
Herein, the first hetero Diels–Alder (DA) reactions with a stable, dicationic urea azine derived azo dienophile, synthesized by two-electron oxidation of a neutral urea azine are reported. Several charged DA products were synthesized in good yield and fully characterized. The DA adduct of anthracene is in thermal equilibrium with the reactants at room temperature, and the reaction enthalpy and entropy were determined from the temperature-dependent equilibrium constant. Furthermore, base addition to solutions of the pentacene DA product led to deprotonation, cleavage of the N−N bond, and formation of an electron-rich 6,13-bisguanidinyl-substituted pentacene. The redox and optical properties of this new pentacene derivative were studied. Furthermore, the dication resulting from its two-electron oxidation was synthesized and fully characterized. The results disclose a new elegant route to electron-rich pentacene derivatives.  相似文献   

5.
有机场效应晶体管(organic field—effect transistors,OFETs)是以有机半导体材料作为有源层,通过电场控制电流的电子器件.与传统的无机半导体器件相比,由于其可应用于生产大面积、柔性、低成本电子设备而备受关注,在有机存储器件、有机太阳能电池、柔性平板显示和电子纸等众多领域具有潜在而广泛的应用前景.并苯类材料因其紧密的分子堆积及优异的半导体性能被广泛研究.其中,并五苯及其衍生物在场效应晶体管中表现出良好的性质,其效果甚至可以与非晶硅相媲美,但并五苯较差的溶解性及环境稳定性阻碍了其进一步应用.科研工作者通过对分子结构进行修饰改造设计,合成了一系列并五苯的衍生物,其不仅在稳定性、电学性能和溶解性方面有很大提高,还可以将该p-型半导体材料拓展到双极性及n-型半导体材料领域.本文对并五苯及其衍生物在有机场效应晶体管中的应用进行了较为全面的综述,期望对该领域的研究起到一定的推动作用.  相似文献   

6.
The role of lateral interconnections between three-dimensional pentacene islands on low surface energy polyimide gate dielectrics was investigated by the measurement of the surface coverage dependence of the charge mobility and the use of conducting-probe atomic force microscopy (CP-AFM). From the correlation between the electrical characteristics and the morphological evolution of the three-dimensionally grown pentacene films-based field-effect transistors, we found that during film growth, the formation of interconnections between the three-dimensional pentacene islands that are isolated at the early stage contributes significantly to the enhancement process of charge mobility. The CP-AFM current mapping images of the pentacene films also indicate that the lateral interconnections play an important role in the formation of good electrical percolation pathways between the three-dimensional pentacene islands.  相似文献   

7.
Evaporated pentacene thin films with thicknesses from several nm to 150 nm on gold and silver substrates have been studied by ultraviolet photoelectron spectroscopy (UPS), near-edge X-ray absorption fine structure (NEXAFS), scanning tunneling microscopy (STM), and atomic force microscopy (AFM). It was found that pentacene thin-film structures, particularly their molecular orientations, are strongly influenced by the metal substrates. UPS measurements revealed a distinct change in the valence band structures of pentacene on Au compared to those on Ag, which is attributed to the different packing between adjacent molecules. Using NEXAFS, we observed 74+/-5 degrees and 46+/-5 degrees molecular tilt angles on Ag and Au, respectively, for all measured thicknesses. We propose that pentacene molecules stand up on the surface and form the "thin-film phase" structure on Ag. On Au, pentacene films grow in domains with molecules either lying flat or standing up on the substrate. Such a mixture of two crystalline phases leads to an average tilt angle of 46 degrees for the whole film and the change in valence band structures. STM and distance-voltage (z-V) spectroscopy studies confirm the existence of two crystalline phases on Au with different conducting properties. z-V spectra on the low conducting phase clearly indicate its nature as "thin-film phase".  相似文献   

8.
Pentathienoacene, the thiophene equivalent of pentacene, is one of the latest additions to the family of organic crystal semiconductors with a great potential for use in thin film transistors. By using density functional theory and gas-phase ultraviolet photoelectron spectroscopy, we investigate the microscopic charge transport parameters of the pentathienoacene crystal. We find that the valence band exhibits a stronger dispersion than those in the pentacene and rubrene single crystals with marked uniaxial characteristics within the molecular layer due to the presence of one-dimensional pi-stacks; a small hole effective mass is also found along the direction perpendicular to the molecular layers. In the conduction band, strong intermolecular sulfur-sulfur interactions give rise to a significant interstack electronic coupling whereas the intrastack dispersion is greatly reduced. The intramolecular vibronic coupling (reorganization energy) is stronger than that in pentacene but comparable to that in sexithiophene; it is larger for holes than for electrons, as a result of low-frequency modes induced by the sulfur atoms. The polarization energy is large, but its effect on the vibronic coupling remains small. Charge transport is discussed in the framework of both band and hopping models.  相似文献   

9.
A novel alpha-diketone precursor of pentacene, 6,13-dihydro-6,13-ethanopentacene-15,16-dione, was prepared and converted successfully to pentacene in 74 % yield by photolysis of the precursor in toluene: Irradiation of the diketone solution in toluene with light of 460 nm under an Ar atmosphere caused the solution to change from yellow to fluorescent orange-pink within a few minutes, after which, purple precipitates appeared. After 35 min, the solution changed to colorless and the purple precipitates were filtered to give pentacene in 74 % yield. By contrast, in the presence of oxygen, the color of the solution changed from yellow to pale yellow, and only 6,13-endoperoxide of pentacene was quantitatively obtained. The rate of the reaction upon photolysis was measured by observing the decay of n-pi* absorption of the precursor at 460 nm, and was found to be similar in both the presence and absence of oxygen. Therefore, the photoreaction of the alpha-diketone precursor seemed to occur via the singlet excited state. Because the T-T absorption of pentacene was observed upon photolysis of the precursor in the nanosecond transient absorption measurement under an Ar atmosphere, the excited triplet state of the pentacene generated singlet oxygen by sensitization, and it reacted with the ground-state pentacene to give the 6,13-endoperoxide. The alpha-diketone deposited on glass was also converted successfully to pentacene film by photoirradiation. In addition, diketone precursors of a mixture of 2,8- and 2,9-dibromopentacene and 2,6-trianthrylene were also prepared and their photoconversion was performed.  相似文献   

10.
Organic electronic devices that use graphene electrodes have received considerable attention because graphene is regarded as an ideal candidate electrode material. Transfer and lithographic processes during fabrication of patterned graphene electrodes typically leave polymer residues on the graphene surfaces. However, the impact of these residues on the organic semiconductor growth mechanism on graphene surface has not been reported yet. Here, we demonstrate that polymer residues remaining on graphene surfaces induce a stand-up orientation of pentacene, thereby controlling pentacene growth such that the molecular assembly is optimal for charge transport. Thus, pentacene field-effect transistors (FETs) using source/drain monolayer graphene electrodes with polymer residues show a high field-effect mobility of 1.2 cm(2)/V s. In contrast, epitaxial growth of pentacene having molecular assembly of lying-down structure is facilitated by π-π interaction between pentacene and the clean graphene electrode without polymer residues, which adversely affects lateral charge transport at the interface between electrode and channel. Our studies provide that the obtained high field-effect mobility in pentacene FETs using monolayer graphene electrodes arises from the extrinsic effects of polymer residues as well as the intrinsic characteristics of the highly conductive, ultrathin two-dimensional monolayer graphene electrodes.  相似文献   

11.
Bis(triisopropylsilylethnyl) pentacene (TIPS pentacene) was synthesized to increase its solubility in common liquid solvents and, at the same time, enhance the π–π stacking between neighboring acenes in the crystallized state in comparison with unmodified pentacene. Hot-stage microscopy experiments revealed that during heating voids develop along the long axis of the TIPS pentacene films {along the [210] direction/parallel to the (120 ) planes} and crystals overlap along the short axis {along the [120 ] direction/parallel to the (210) planes}. From molecular mechanics simulations, the predominant twin boundaries of (120 ) and commonly observed cracking planes of (120), (120 ), and (210) had relatively low surface energies in comparison with planes with similar Miller indices. Organic thin-film transistors with TIPS pentacene as the active layer were fabricated, and the mobility values decreased from 0.4–1.0 cm2/V s before cracking to ∼0.2 cm2/V s after cracking. To maintain the high charge carrier mobility of TIPS pentacene devices, these cracks should be avoided. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3631–3641, 2006  相似文献   

12.
We demonstrate that modifying pentacene to incorporate an acid-labile moiety into its molecular structure leads to a new precursor that can be easily deposited, photopatterned, and processed via wet-chemical methods to produce organic semiconducting devices exhibiting good electrical characteristics. Acidic conditions produced by ultraviolet illumination of a co-deposited photoacid generator greatly accelerate the local conversion of this N-sulfinyl-tert-butylcarbamate pentacene adduct back to pentacene. Photopatterned thin-film transistors exhibit carrier mobilities in excess of 0.1 cm2 V-1 s-1, making this an attractive precursor for fabrication of large-area organic electronics via solution-phase methods.  相似文献   

13.
To assess the formation of intra-island grain boundaries during the early stages of pentacene film growth, we studied sub-monolayers of pentacene on pristine silicon oxide and silicon oxide with high pinning centre density (induced by UV/O(3) treatment). We investigated the influence of the kinetic energy of the impinging molecules on the sub-monolayer growth by comparing organic molecular beam deposition (OMBD) and supersonic molecular beam deposition (SuMBD). For pentacene films fabricated by OMBD, higher pentacene island-density and higher polycrystalline island density were observed on UV/O(3)-treated silicon oxide as compared to pristine silicon oxide. Pentacene films deposited by SuMBD exhibited about one order of magnitude lower island- and polycrystalline island densities compared to OMBD, on both types of substrates. Our results suggest that polycrystalline growth of single islands on amorphous silicon oxide is facilitated by structural/chemical surface pinning centres, which act as nucleation centres for multiple grain formation in a single island. Furthermore, the overall lower intra-island grain boundary density in pentacene films fabricated by SuMBD reduces the number of charge carrier trapping sites specific to grain boundaries and should thus help achieving higher charge carrier mobilities, which are advantageous for their use in organic thin-film transistors.  相似文献   

14.
We investigate by a scanning probe technique termed phase-electrostatic force microscopy the local electrostatic potential and its correlation to the morphology of the organic semiconductor layer in operating ultra-thin film pentacene field effect transistors. This technique yields a lateral resolution of about 60 nm, allowing us to visualize that the voltage drop across the transistor channel is step-wise. Spatially localized voltage drops, adding up to about 75% of the potential difference between source and drain, are clearly correlated to the morphological domain boundaries in the pentacene film. This strongly supports and gives a direct evidence that in pentacene ultra-thin film transistors charge transport inside the channel is ultimately governed by domain boundaries.  相似文献   

15.
Theoretical studies of pentacene and a series of its derivatives were performed using the PM3 and DFT methods. Based on B3LYP/6-31G(d) optimized geometries, the electronic, IR, and 13C NMR spectra of the derivatives were calculated using the INDO/CIS, PM3, and B3LYP/6-31G(d) methods, respectively. The energy gaps of the derivatives decreased as the chain length increased and electron-withdrawing substituents were introduced. The polymer based on pentacene, especially in the presence of trimethylsilylacetylene, offers promise as an excellent conducting polymer. The main absorption bands in the electronic spectra of the derivatives compared with those of pentacene were shifted to the red, whereas the IR frequencies for some of the C=C and C-H bonds were shifted to the blue. The 13C chemical shifts of the carbon atoms connected with electron-withdrawing substituents were shifted upfield, while those of the bridged carbon atoms in the middle part of the pentacene unit shifted downfield.  相似文献   

16.
The electronic structure of rubrene/pentacene and pentacene/rubrene bilayers has been investigated using soft X-ray absorption spectroscopy, resonant X-ray emission spectroscopy, and density-functional theory calculations. X-ray absorption and emission measurements reveal that it has been possible to alter the lowest unoccupied and the highest occupied molecular orbital states of rubrene in rubrene/pentacene bilayer. In the reverse case, one gets p* molecular orbital states originating from the pentacene layer. Resonant X-ray emission spectra suggest a reduction in the hole-transition probabilities for the pentacene/rubrene bilayer in comparison to reference pentacene layer. For the rubrenepentacene structure, the hole-transition probability shows an increase in comparison to the rubrene reference. We also determined the energy level alignment of the pentacene-rubrene interface by using X-ray and ultraviolet photoelectron spectroscopy. From these comparisons, it is found that the electronic structure of the pentacene-rubrene interface has a strong dependence on interface characteristics which depends on the order of the layers used.  相似文献   

17.
Optical excitation at liquid helium temperature of pentacene molecules embedded in benzoic acid crystals gives rise to defects in the environment of pentacene. By deuteration of the acid proton of the matrix and/or selective deuteration of the pentacene molecules, it has been proven that these defects are due to the displacement of acid protons of the matrix and are produced by reversible proton transfer between the benzoic acid host and the pentacene guest. The defect sites are unstable and decay with lifetimes ranging from subseconds to hours. Different defect sites also interconvert spontaneously in the dark or after absorption of a second photon.  相似文献   

18.
An azobenzene-modified gamma-cyclodextrin stationary phase (Az gamma-CDSP) was prepared and its photo- and temperature-responses for the retention of perylene and pentacene were investigated using a mixture of methanol and water as the mobile phase in micro-HPLC. The retention of perylene slightly increased, whereas that of pentacene significantly decreased by UV light irradiation to Az gamma-CDSP. These retentions recovered upon irradiation with visible light. Both retentions decreased upon an increase in the column temperature. It was presumed that the trans-azobenzene moiety acts as a preventive cap for perylene and a spacing for pentacene in filling the CD cavity. An azobenzene-modified stationary phase changed its retention behavior with the column temperature and the light irradiation. An improvement in the micro-HPLC system and the optimization of the molecular structure of the photo-responsive stationary phase would provide selective retention control by the irradiation of light in micro-separation systems.  相似文献   

19.
并五苯作为典型的空穴传输材料一直是人们研究的热点. 本文在密度泛函理论框架下结合Marcus理论重点讨论了并五苯-Au体系四种异构体的传输性质,从分子内重组能、转移积分和空穴传输速率三个角度研究了Au原子的引入对并五苯传输性质的影响. 计算结果显示,Au原子的引入使并五苯的重组能贡献主要由C-C单双键的伸缩振动转变为Au原子与并五苯之间的拉伸振动,并且这种拉伸振动随着Au原子从中心到边缘逐渐加强. 此外,Au原子的引入对分子间的转移积分也产生了一定的影响,造成了相对小的转移积分值,分析得出是由分子构型和轨道分布两方面共同作用的结果.  相似文献   

20.
The morphology, structure, and transport properties of pentacene thin film transistors (TFTs) are reported showing the influence of the gate dielectric surface roughness. Upon roughening of the amorphous SiO2 gate dielectric prior to pentacene deposition, dramatic reductions in pentacene grain size and crystallinity were observed. The TFT performance of pentacene films deposited on roughened substrates showed reduced free carrier mobility, larger transport activation energies, and larger trap distribution widths. Spin coating roughened dielectrics with polystyrene produced surfaces with 2 A root-mean-square (rms) roughness. The pentacene films deposited on these coated surfaces had grain sizes, crystallinities, mobilities, and trap distributions that were comparable to the range of values observed for pentacene films deposited on thermally grown SiO2 (roughness also approximately 2 A rms).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号