首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 931 毫秒
1.
Fast cobalt carbonyl-mediated generation of ureas from primary amines was performed using high-density microwave irradiation. This enhanced method permitted the preparation of symmetrical ureas in good yields and unsymmetrical ureas in moderate yields. The reaction times varied between 10 s and 40 min. The proposed mechanism for the reaction includes in situ generation of an intermediate isocyanate that subsequently traps the free amine, producing the urea product.  相似文献   

2.
It has been shown that catalytic amounts (20-40 mol %) of bis-aryl (thio)ureas greatly accelerate the DABCO-promoted Baylis-Hillman reaction between a range of aromatic aldehydes and methyl acrylate in the absence of solvent. These robust organocatalysts are superior mole per mole promoters of the reaction than either methanol or water and are recoverable in high yield after the reaction by column chromatography.  相似文献   

3.
Hao Li 《Tetrahedron》2010,66(26):4827-20900
Reaction of N-δ-alkenyl-N′-sulfonyl urea 1 with N-iodosuccinimde (NIS; 2 equiv) and a catalytic amount of AgOTf (20 mol %) at room temperature led to intramolecular alkoxyamination to form bicyclic isourea 2a in 95% isolated yield. In comparison, reaction of 1 with NIS and sodium bicarbonate (1 equiv) at room temperature led to isolation of bicyclic imidazolidin-2-one 2b in 91% yield. These NIS-mediated alkoxyamination and diamination protocols were effective for a range of N-δ-alkenyl-N′-sulfonyl ureas to form the corresponding heterobicyclic compounds in good yield with high chemoselectivity and good to excellent diastereoselectivity.  相似文献   

4.
Zn based hydroxide double salts (Zn-HDS) with an interlayer spacing of 20 Å was produced by dissolving dumbbell-like ZnO crystal. The resulting Zn-HDS with a ribbon-like shape has a suitable morphology to explore the remarkably mild procedure for synthesis of ZnO nanobelts. We found that the intercalated water molecules into the Zn-HDS could play a key role in the ZnO nanobelts porosity. The nonporous ZnO nanobelts were successfully synthesized from the Zn-HDS by soft-solution process at 95 °C through mild dehydration agent as Na2CO3. As-synthesized ZnO nanobelts were grown along not only the [0 1 −1 0], but also the [2 −1 −1 0]. On the other hand, the porous ZnO nanobelts were obtained from the Zn-HDS by calcinations at 200 and 400 °C. In addition, flower-like ZnO multipod and hierarchical nanostructures were produced from the Zn-HDS by using of strong dehydration agent (NaOH) through hydrothermal reaction at 150 and 230 °C.  相似文献   

5.
Atropisomeric N-methyl-N,N′-diaryl ureas may be obtained in enantiomerically enriched form by oxidative kinetic resolution of their sulfide derivatives. The atropisomeric sulfides may be obtained in up to 97:3 er and display high stability to racemisation (half-lives at 25 °C of up to 500 years). Unlike related fully alkylated ureas, the product sulfoxides exhibit relatively weak thermodynamic conformational selectivity.  相似文献   

6.
Reaction of liquid water with Zn and Al powders and foils have been investigated in the 25-75 °C range. The reaction of Zn metal powder with water in this temperature range yields ZnO nanorods. The diameter of the nanorods decreases slightly with the increase in the reaction temperature, accompanied by an increase in the relative intensity of UV emission band. Zn metal foils also yield ZnO nanorods on reaction with water in the 25-75 °C range. Reaction of Al metal powder or foil with water in the 25-75 °C range yields Al(OH)3 nanorods. The formation of ZnO and Al(OH)3 nanorods by the reaction of the metals with water is suggested to occur because of the decomposition of water by the metal giving hydrogen.  相似文献   

7.
We report the synthesis and the electrochemical properties of hybrid films made of zinc oxide (ZnO) and Meldola's blue dye (MB) using cyclic voltammetry (CV). MB/ZnO hybrid films were electrochemically deposited onto glassy carbon, gold and indium tin oxide-coated glass (ITO) electrodes at room temperature (25 ± 2 °C) from the bath solution containing 0.1 M Zn(NO3)2, 0.1 M KNO3 and 1 × 10−4 M MB. The surface morphology and deposition kinetics of MB/ZnO hybrid films were studied by means of scanning electron microscopy (SEM), atomic force microscopy (AFM) and electrochemical quartz crystal microbalance (EQCM) techniques, respectively. SEM and AFM images of MB/ZnO hybrid films have revealed that the surfaces are well crystallized, porous and micro structured. MB molecules were immobilized and strongly fixed in a transparent inorganic matrix. MB/ZnO hybrid films modified glassy carbon electrode (MB/ZnO/GC) showed one reversible redox couple centered at formal potential (E0′) −0.12 V (pH 6.9). The surface coverage (Γ) of the MB immobilized on ZnO/GC was about 9.86 × 10−12 mol cm−2 and the electron transfer rate constant (ks) was determined to be 38.9 s−1. The MB/ZnO/GC electrode acted as a sensor and displayed an excellent specific electrocatalytic response to the oxidation of nicotinamide adenine dinucleotide (NADH). The linear response range between 50 and 300 μM NADH concentration at pH 6.9 was observed with a detection limit of 10 μM (S/N = 3). The electrode was stable during the time it was used for the full study (about 1 month) without a notable decrease in current. Indeed, dopamine (DA), ascorbic acid (AA), acetaminophen (AP) and uric acid (UA) did not show any interference during the detection of NADH at this modified electrode.  相似文献   

8.
We present a novel method for colloidal synthesis of one-dimensional ZnO nanopods by heterogeneous nucleation on zero-dimensional ZnO nanoparticle ‘seeds’. Ultra-small ZnO nanopods, multi-legged structures with sub-20 nm individual leg diameters, can be synthesized by hydrolysis of a Zn2+ precursor growth solution in presence of ∼4 nm ZnO seeds under hydrothermal conditions via microwave-assisted heating in as little as 20 min of reaction time. One-dimensional ZnO nanorods are initially generated in the reaction mixture by heterogeneous nucleation and growth along the [0001] direction of the ZnO crystal. Growth of one-dimensional nanorods subsequently yields to an ‘attachment’ and size-focusing phase where individual nanorods fuse together to form multi-legged nanopods having diameters ∼15 nm. ZnO nanopods exhibit broad orange-red defect-related photoluminescence in addition to a near-band edge emission at 373 nm when excited above the band-gap at 350 nm. The defect-related photoluminescence of the ZnO nanopods has been applied towards reversible optical humidity sensing at room temperature. The sensors demonstrated a linear response between 22% and 70% relative humidity with a 0.4% increase in optical intensity per % change in relative humidity. Due to their ultra-small dimensions, ZnO nanopods exhibit a large dynamic range and enhanced sensitivity to changes in ambient humidity, thus showcasing their ability as a platform for optical environmental sensing.  相似文献   

9.
Khan SB  Faisal M  Rahman MM  Jamal A 《Talanta》2011,85(2):943-949
Well-crystalline ZnO nanoparticles (NPs) were synthesized in large-quantity via simple hydrothermal process using the aqueous mixtures of zinc chloride and ammonium hydroxide. The detailed structural properties were examined using X-ray diffraction pattern (XRD) and field emission scanning electron microscope (FESEM) which revealed that the synthesized NPs are well-crystalline and possessing wurtzite hexagonal phase. The NPs are almost spherical shape with the average diameters of ∼50 ± 10 nm. The quality and composition of the synthesized NPs were obtained using Fourier transform infrared (FTIR) and electron dispersed spectroscopy (EDS) which confirmed that the obtained NPs are pure ZnO and made with almost 1:1 stoichiometry of zinc and oxygen, respectively. The optical properties of ZnO NPs were investigated by UV-vis absorption spectroscopy. Synthesized ZnO NPs were extensively applied as a photocatalyst for the degradation of acridine orange (AO) and as a chemi-sensor for the electrochemical sensing of acetone in liquid phase. Almost complete degradation of AO has taken place after 80 min of irradiation time. The fabricated acetone sensor based on ZnO NPs exhibits good sensitivity (∼0.14065 μA cm−2 mM−1) with lower detection limit (0.068 ± 0.01 mM) in short response time (10 s).  相似文献   

10.
A novel and simple chemical method was developed for the deposition of ZnO films from aqueous solution, integrating the merits of successive ionic layer adsorption and reaction with the chemical bath deposition technology. By this new method, dense and continuous ZnO thin films with good crystallinity can be prepared in a very short time, e.g., in about 20 min. Results show that as-deposited ZnO films on glass and Si (1 0 0) exhibit hexagonal wurtzite crystalline structure and the preferential orientation along (0 0 2) plane. With a dense and continuous appearance, the film is composed of ZnO particles in even size of 200-300 nm. The strong and sharp emission at 391 nm and several weak emissions at the wavelength band of 440-500 nm indicate the high optical quality and the stoichiometrical nature of obtained film. Mechanism analysis shows that the reaction duration in hot water and the drying process are vital important factors affecting the deposition process and the crystallization behavior of the film prepared via the aqueous solution route.  相似文献   

11.
Meso-porous zinc oxide films were prepared on tin-doped indium oxide-coated, polyethelene naphthalate substrates from binder-free ZnO slurry. The reaction with ammonium hydroxide was found to increase connection between ZnO grains by forming a nano-rod like structure followed by heating at 150 °C. The enhancement of adhesion among ZnO grains was evaluated using a nano-scratch technique. Two different xanthene dyes were used to sensitize ZnO electrodes, with a photo-voltage of 657 mV, fill-factor of 73% and photo-current of 4.1 mA cm−2 with a maximum light to-electrical energy conversion efficiency of 2.0% being obtained for the plastic based ZnO|mercurochrome|electrolyte solar cell under 1 sun.  相似文献   

12.
Ahmad Umar 《Talanta》2009,77(4):1376-677
High-aspect-ratio ZnO nanowires based ultra-sensitive hydrazine amperometric sensor has been fabricated which showed a high and reproducible sensitivity of 12.76 μA cm−2 nM−1, detection limit, based on S/N ratio, 84.7 nM, response time less than 5 s, linear range from 500 to 1200 nM and correlation coefficient of R = 0.9989. This is the first report in which such a very high-sensitivity and low detection limit has been achieved for the hydrazine sensors by using ZnO nanostructures modified electrodes. Therefore, this work opens a way to utilize simply grown ZnO nanostructures as an efficient electron mediator to fabricate efficient hydrazine sensors.  相似文献   

13.
A novel microwave plasma assisted by tube furnace heating system is designed to grow tetrapod ZnO nanostructures. Under optimal reaction conditions, Zn powder is oxidated to form the tetrapod ZnO with straight and uniform four legs (nanorods), bearing diameters ranging from 10 to 25 nm and lengths up to 160 nm. High-resolution transmission electron microscopy analyses reveals that the tetrapod ZnO nanostructures are perfect crystalloid. High spatial resolution cathodoluminescent spectrum for individual tetrapod ZnO nanostructure shows only a strong ultraviolet emission at 385 nm.  相似文献   

14.
Novel large-scale hollow ZnO spherical shells were synthesized by ionic liquids assisted hydrothermal oxidization of pure zinc powder without any catalyst at a relatively low temperature of 160 °C. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM) patterns show that the shells are composed of ZnO and the structure of the shells is very unique. Textured flower-like ZnO consisting of ZnO rods is grown on the outer surfaces of shells forming a triple assembly. Room-temperature photoluminescence spectra of the oxidized material show a sharp peak at 379 nm and a wider broad peak centered at 498 nm. The possible growth mechanism of the triple assembly of ZnO is discussed in detail.  相似文献   

15.
In this work, ZnO/PPy nanocomposite coating was fabricated on stainless steel and evaluated as a novel headspace solid phase microextraction (HS-SPME) fiber coating for extraction of ultra-trace amounts of environmental pollutants; namely, aliphatic hydrocarbons in water and soil samples. The ZnO/PPy nanocomposite were prepared by a two-step process including the electrochemical deposition of PPy on the surface of stainless steel in the first step, and the synthesis of ZnO nanorods by hydrothermal process in the pores of PPy matrix in the second step. Porous structure together with ZnO nanorods with the average diameter of 70 nm were observed on the surface by using scanning electron microscopy (SEM). The effective parameters on HS-SPME of hydrocarbons (i.e., extraction temperature, extraction time, desorption temperature, desorption time, salt concentration, and stirring rate) were investigated and optimized by one-variable-at-a-time method. Under optimized conditions (extraction temperature, 65 ± 1 °C; extraction time, 15 min; desorption temperature, 250 °C; desorption time, 3 min; salt concentration, 10% w/v; and stirring rate, 1200 rpm), the limits of detection (LODs) were found in the range of 0.08–0.5 μg L−1, whereas the repeatability and fiber-to-fiber reproducibility were in the range 5.4–7.6% and 8.6–10.4%, respectively. Also, the accuracies obtained for the spiked n-alkanes were in the range of 85–108%; indicating the absence of matrix effects in the proposed HS-SPME method. The results obtained in this work suggest that ZnO/PPy can be promising coating materials for future applications of SPME and related sample preparation techniques.  相似文献   

16.
Thick films of pure ZnO were obtained by screen-printing technique. Surface functionalized ZnO thick films by Cr2O3 were obtained by dipping pure ZnO thick films into 0.01 M aqueous solution of chromium trioxide (CrO3). The dipped films were fired at 500 °C for 30 min. Upon firing, the CrO3 would reduce to Cr2O3. Cr2O3-activated (0.47 mass%) ZnO thick films resulted in LPG sensor. Upon exposure to 100 ppm LPG, the barrier height between Cr2O3 and ZnO grains decreases markedly, leading to a drastic decrease in resistance. The sensor was found to sense LPG at 350 °C and no cross sensitivity was observed to other hazardous, polluting and inflammable gases. The quick response (∼18 s) and fast recovery (∼42 s) are the main features of this sensor. The effects of microstructures and dopant concentrations on the gas sensing performance of the sensor were studied and discussed.  相似文献   

17.
The remarkable synergistic effects of the zinc oxide (ZnO) nanoparticles and multi-walled carbon nanotubes (MWNTs) were developed for the ssDNA probe immobilization and fabrication of the electrochemical DNA biosensor. The ZnO/MWNTs/chitosan nanocomposite membrane-modified glassy carbon electrode (ZnO/MWNTs/CHIT/GCE) was fabricated and the ssDNA probes were immobilized on the modified electrode surface. The preparation method is quite simple and inexpensive. The hybridization events were monitored by differential pulse voltammetry (DPV) using methylene blue (MB) as an indicator. As compared with previous MWNTs-based DNA biosensors, this composite matrix combined the attractive biocompatibility of ZnO nanoparticles with the excellent electron-transfer ability of MWNTs and fine membrane-forming ability of CHIT increased the DNA attachment quantity and complementary DNA detection sensitivity. The approach described here can effectively discriminate complementary DNA sequence, noncomplementary sequence, single-base mismatched sequence and double-base mismatched sequence related to phosphinothricin acetyltransferase (PAT) gene in transgenic corn. Under optimal conditions, the dynamic detection range of the sensor to PAT gene complementary target sequence was from 1.0 × 10−11 to 1.0 × 10−6 mol/L with the detection limit of 2.8 × 10−12 mol/L. The polymerase chain reaction (PCR) amplification of nopaline synthase (NOS) gene from the real sample of one kind of transgenic soybeans was also satisfactorily detected with this electrochemical DNA biosensor, suggesting that the ZnO/MWNTs/CHIT nanocomposite hold great promises for sensitive electrochemical biosensor applications.  相似文献   

18.
Ahmad Umar  M.M. Rahman  Y.-B. Hahn 《Talanta》2009,78(1):284-1855
This paper reports the fabrication of highly-sensitive cholesterol biosensor based on cholesterol oxidase (ChOx) immobilization on well-crystallized flower-shaped ZnO structures composed of perfectly hexagonal-shaped ZnO nanorods grown by low-temperature simple solution process. The fabricated cholesterol biosensors reported a very high and reproducible sensitivity of 61.7 μA μM−1 cm−2 with a response time less than 5 s and detection limit (based on S/N ratio) of 0.012 μM. The biosensor exhibited a linear dynamic range from 1.0-15.0 μM and correlation coefficient of R = 0.9979. A lower value of apparent Michaelis-Menten constant (Kmapp), of 2.57 mM, exhibited a high affinity between the cholesterol and ChOx immobilized on flower-shaped ZnO structures. Moreover, the effect of pH on ChOx activity on the ZnO modified electrode has also been studied in the range of 5.0-9.0 which exhibited a best enzymatic activity at the pH range of 6.8-7.6. To the best of our knowledge, this is the first report in which such a very high-sensitivity and low detection limit has been achieved for the cholesterol biosensor by using ZnO nanostructures modified electrodes.  相似文献   

19.
Hexagonal ZnO group whiskers synthesized from Zn(NH3)42+ precursor at 145°C in a structure-directing template solvent (2.5% v/v alcohol) show strong photoluminescence at 409 and 420 nm. FE-SEM and TEM observation reveals that the ZnO group whiskers consist of uniform pencil-like whiskers with the diameter of around 1.5 μm and the length of up to 6 μm.  相似文献   

20.
A simple, efficient and low-temperature approach for the assembly of hierarchical Zinc oxide (ZnO) microstructures in ionic liquid [EMIM]+[BF4] is reported. The as-obtained ZnO superstructures are composed of microbundles of nanorods from the center points, with the diameter and length in the range of 100-150 nm and 2-4 μm, which have been characterized by X-ray diffraction, scanning and transmission electron microscopy, and photoluminescence spectroscopy. The ZnO microstructures exhibit significant defect-related green-yellow emission and high photodegradation of dye Methyl Orange (5×10−5 mol/L) under UV excitation within 80 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号