首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cobalt dithiolene complex with the sulfonylamide-substituted Cp ligand [(C5H4-NHTs)Co{S2C2(COOMe)2}] (1, Ts = p-SO2C6H4Me) reacted with TsOH · H2O to give [(C5H4-NH2)Co{S2C2(COOMe)(H)}] (2), [(C5H4-NHTs)Co(S2C2H2)] (3) and [(C5H4-NHTs)Co{S2C2(COOMe)(H)}] (4). Complex 1 was dissolved in a basic aqueous solution, and the anion reacted with Me2SO4 to form the N-methylated product [{C5H4-N(Me)Ts}Co{S2C2(COOMe)2}] (5); the carboxylic acid complex [{C5H4-N(Me)Ts}Co{S2C2(COOMe)(COOH)}] (6) formed by a base hydrolysis. The X-ray crystal structures of complexes 4-6 and the methylsulfonylamide-substituted Cp complex [(C5H4-NHMs)Co{S2C2(COOMe)2}] (7, Ms = SO2Me) were determined. In the crystal structures of complexes 4 and 7, intermolecular hydrogen bondings of NH?O (ca. 2.1 Å) and NH?S (ca. 3.1 Å) were observed. Complex 6 showed the OH?O intermolecular hydrogen bonding (ca. 1.6 Å) of COOH moiety between two molecules, and these two molecules were assembling each other. Complexes 5 and 6 showed an intramolecular π-π interaction between the aromatic cobaltadithiolene and benzene rings, and complex 5 also has intermolecular π-π interactions between two benzene rings, and between two cobaltadithiolene rings.  相似文献   

2.
Yuji Takashima 《Tetrahedron》2010,66(1):197-2519
A general approach to the (S)- and (R)-isoflavans was invented, and efficiency of the method was demonstrated by the synthesis of (S)-equol ((S)-3), (R)-sativan ((R)-4), and (R)-vestitol ((R)-5). The key step is the allylic substitution of (S)-6a (Ar1=2,4-(MeO)2C6H3) and (R)-6b (Ar1=2,4-(BnO)2C6H3) with copper reagents derived from CuBr·Me2S and Ar2-MgBr (7a, Ar2=4-MeOC6H4; 7b, 2,4-(MeO)2C6H3; 7c, 2-MOMO-4-MeOC6H3), furnishing anti SN2′ products (R)-8a and (S)-8b,c with 93-97% chirality transfer in 60-75% yields. The olefinic part of the products was oxidatively cleaved and the Me and Bn groups on the Ar1 moieties was then removed. Finally, phenol bromide 9a and phenol alcohols 9b,c underwent cyclization with K2CO3 and the Mitsunobu reagent to afford (S)-3 and (R)-4 and -5, respectively.  相似文献   

3.
We have accomplished efficient synthesis of planar-chiral bridged 2,2′-bipyridine (S)-6, C2-symmetric bipyridinophane (S,S)-7, bridged 2,2′:6′,2″-terpyridines (S)-11, and C2-symmetric terpyridine (S,S)-12 by metal-mediated biaryl cross-coupling or homo-coupling reactions of the corresponding 6-halo[10](2,5)pyridinophanes. Stille-type and Negishi cross-coupling reactions are particularly useful for the syntheses of 6, 11, and 12. On the other hand, nickel-mediated homo-coupling reaction worked best for achieving the synthesis of structurally unique bipyridinophane 7.  相似文献   

4.
The resolution by Lipase PS of rac-5 (from reduction of ketone 6, obtained from dicyclopentadiene with a new environment-friendly synthesis) gives (2S)-5, which was further reduced to the endo(2R)-1a alcohol. The endo(2S)-1b alcohol was obtained from camphor with a multistep synthesis. Pinacol couplings of 3a,b, carried out with Mg/Hg or Corey's general procedure respectively, afforded with high diastereoselectivity the C2 symmetry diols (2R,2′R)-2a and (2S,2′S)-2b, with endo oriented OH functions. The enantiogenic power of the endo alcohol (2R)-1a and (2S)-1b and of the diols (2R,2′R)-2a and (2S,2′S)-2b was tested towards the LiAlH4 reduction of acetophenone. The C2 symmetry appears to play a fundamental role.  相似文献   

5.
Machiko Ono  Yuki Shida 《Tetrahedron》2007,63(41):10140-10148
(±)-(4,5-anti)-4-Benzyloxy-5-hydroxy-(2E)-hexenoic acid 6 was subjected to δ-lactonization in the presence of 2,4,6-trichlorobenzoyl chloride and pyridine to give the α,β-unsaturated-δ-lactone congener (±)-7 (87% yield) accompanied by trans-cis isomerization. This δ-lactonization procedure was applied to the chiral synthesis of (+)-(4S,5R)-7 or (−)-(4R,5S)-7 from the chiral starting material (+)-(4S,5R)-6 or (−)-(4R,5S)-6. Deprotection of the benzyl group in (+)-(4S,5R)-7 or (−)-(4R,5S)-7 by the AlCl3/m-xylene system gave the natural osmundalactone (+)-(4S,5R)-5 or (−)-(4R,5S)-5 in good yield, respectively. Condensation of (−)-(4R,5S)-5 and tetraacetyl-β-d-glucosyltrichloroimidate 22 in the presence of BF3·Et2O afforded the condensation product (−)-8 (97% yield), which was identical to tetra-O-acetylosmundalin (−)-8 derived from natural osmundalin 9.  相似文献   

6.
Six C-glucosyl anthrones were characterized as three pairs of epimers by on-line high performance liquid chromatography–circular dichroism (HPLC–CD) analysis and isolated from the roots of Rumex dentatus by column chromatography. Their structures were elucidated by mass spectrometry, nuclear magnetic spectroscopy and HPLC–CD analysis. They are 10R-C-β-d-glucosyl-10-hydroxyemodin-9-anthrone (rumejaposide E, 1) and 10S-C-β-d-glucosyl-10-hydroxyemodin-9-anthrone (rumejaposide F, 2), 10R-C-β-d-glucosylemodin-9-anthrone (rumejaposide G, 3) and 10S-C-β-d-glucosylemodin-9-anthrone (rumejaposide H, 4), 10S-C-β-d-glucosyl-10-hydroxychrysophanol-9-anthrone (cassialoin, 5) and 10R-C-β-d-glucosyl-10-hydroxychrysophanol-9-anthrone (rumejaposide I, 6). Rumejaposides F–I (24 and 6) were new C-glucosyl anthrones. Rumejaposide E (1) and cassialoin (5) were isolated for the first time in Rumex plants. On-line HPLC–UV–CD analysis was a useful tool for structure elucidating epimeric C-glycosides anthrones 36 because of the poor stability of the pure isomers (3 and 4) and the minute quantity of 5 and 6 in the mixture.  相似文献   

7.
8.
Machiko Ono 《Tetrahedron》2004,60(45):10187-10195
The stereoselective conversion of (4R)-5-hydroxy-4-(4′-methoxyphenyl)-2(E)-pentenoate 4 into the (4S)-4-hydroxy-5-(4′-methoxyphenyl)-2(E)-pentenoate 5 using the AgNO3/MS 4 Å/MeNO2 system was accomplished along with complete inversion at the C4-position, and the synthesis of the intermediate (4S)-7 for the chiral synthesis of (−)-anisomycin 6 from (4S)-7 based on osmium tetroxide-catalyzed stereoselective hydroxylation was achieved.  相似文献   

9.
The novel ruthenium dithiolene complexes [(arene)Ru{S2C2(COOMe)2}] (arene = C6H6 (1a), C6H4(Me)(iPr) (1b), C6Me6 (1c)) were synthesized. The equilibrium between complex 1a and the corresponding dimer [(C6H6)Ru{S2C2(COOMe)2}]2 (1a′) was confirmed in solution. The reaction of complex 1a with dimethyl- or diethylacetylene dicaboxylate gave the alkene-bridged adducts [(C6H6)Ru{S2C2(COOMe)2}{C2(COOR)2}] (R = Me (2a), Et (3a)) as [2 + 2] cycloaddition products formally. The reactions of complex 1a with diazo compounds also gave the alkylidene-bridged adducts [(C6H6)Ru{S2C2(COOMe)2}(CHR)] (R = H (4a), SiMe3 (5a), COOEt (6a)) as [2 + 1] cycloaddition products. The electrochemical behavior of complex 1a was investigated. The reductant of complex 1a was a stable species for several minutes. The oxidant of complex 1a was very unstable; the cation 1a+ formed was immediately converted to the corresponding cationic dimer 1a+. The cationic dimer 1a+ was stable for several minutes, and it was rapidly and quantitatively converted to the neutral complex 1a when it was reduced.  相似文献   

10.
Condensation of the O-protected hydroxyferrocene carbaldehyde (Sp)-1 with suitable diamines, followed by liberation of the hydroxyferrocene moiety leads to a new type of ferrocene-based salen ligands (3). While the use of ethylenediamine in the condensation reaction yields the planar-chiral ethylene-bridged ligand [(Sp,Sp)-3a], reaction with the enantiomers of trans-1,2-cyclohexylendiamine gives rise to the corresponding diastereomeric cyclohexylene-bridged systems [(S,S,Sp,Sp)-3b and (R,R,Sp,Sp)-3c], which feature a combination of a planar-chiral ferrocene unit with a centrochiral diamine backbone. Starting with the ferrocene-aldehyde derivative (Rp)-1, the enantiomeric ligand series (3d/e/f) is accessible via the same synthetic route.The (Sp)-series of these newly developed N2O2-type ligands was used for the construction of the corresponding mononuclear bis(isopropoxy)titanium (4a/b/c), methylaluminum (5a/b/c) and chloroaluminum-complexes (6a/b/c), which were isolated in good yields and identified by X-ray diffraction in several cases. The aluminum complexes (5/6) were successfully used in the Lewis-acid catalyzed addition of trimethylsilylcyanide to benzaldehyde, yielding the corresponding cyanohydrins in 45-62% enantiomeric excess.  相似文献   

11.
Reaction of enantiomerically pure, planar-chiral (pS)-1-bromo-2-methylferrocene (1) with phthalimide in the presence of Cu2O produces (pS)-1-phthalimido-2-methylferrocene (2), quantitative reduction of which with hydrazine hydrate affords (pS)-1-amino-2-methylferrocene (3) with >99% ee. Formylation of amine 3 followed by dehydration of the resulting (pS)-1-formamido-2-methylferrocene (4) provides (pS)-1-isocyano-2-methylferrocene (5), the first example of a planar-chiral isocyanide ligand, in a good yield. Isocyanide 5 reacts with PdI2 to give the crystallographically characterized chiral complex trans-[PdI2{(pS)-1-isocyano-2-methylferrocene}2] (6). The redox behavior of 4, 5, and 6, accessed by cyclic voltammetry, is discussed.  相似文献   

12.
An asymmetric synthesis of (R)- and (S)-2-trifluoromethylepinephrine (1R and 1S) is presented. Trifluoromethylation involves nucleophilic aromatic substitution of halobenzene 4 most likely via a copper mediated CF3 anion equivalent generated in situ. The asymmetric step involves conversion of 3,4-dimethoxy-2-trifluoromethylbenzaldehyde (5) to silyl cyanohydrin (6R and 6S) using a chiral salen catalyst in the presence of titanium. 1R and 1S are potential alternatives to currently used vasoconstrictors in local anesthetic formulations.  相似文献   

13.
An efficient synthetic method towards stereopure acyclic 1,5-dimethylalkane building blocks from methyl (2R)-3-hydroxy-2-methylpropionate (R)-1 (>99% ee) and methyl (2S)-3-hydroxy-2-methylpropionate (S)-1 (>99% ee) through a series of chemical transformations, including Julia–Kocienski olefination and diimide reduction, is described. Through this strategy, two fragments of β-d-mannosyl phosphomycoketide (C32-MPM) and four stereopure 1,5-dimethylalkane C10 chirons are prepared. These C32-MPM fragments and C10 chirons have shown great potential application as building blocks for the synthesis of highly methyl-branched natural products containing chiral oligoisoprenoid-like chains.  相似文献   

14.
Tetracyanoethylene oxide (TCNEO) reacted with [CpCo(dithiolene)] (Cp = η5-cyclopentadienyl) complexes having 4-pyridyl or 3-pyridyl group to undergo a dicyanomethylation to the nitrogen atom on the pyridyl group. The reaction of [CpCo(S2C2(4Py)2)] (1) with TCNEO formed both the monodicyanomethylated [CpCo(S2C2(4Py)(4Py-C(CN)2))] (1a) and bisdicyanomethylated [CpCo(S2C2(4Py-C(CN)2)2)] (1b). [CpCo(S2C2(2Py)(4Py))] (2) reacted with TCNEO to give [CpCo(S2C2(2Py)(4Py-C(CN)2))] (2a) but no dicyanomethylation occurred on the 2-pyridyl group. 2 reacted with excess TCNEO to form the only dicyanomethylated acetylene derivative 2Py-CC-(4Py-C(CN)2) (2c), followed by a dissociation of the CpCoS2 fragment. The monodicyanomethylated [CpCo(S2C2(nPy-C(CN)2)(2-thienyl))] (n = 4 (4a) or 3 (5a)) complexes were also prepared from [CpCo(S2C2(nPy)(2-thienyl))] (n = 4 (4) or 3 (5)) and TCNEO. 1b was structurally characterized by X-ray diffraction study. The all dicyanomethylated [CpCo(dithiolene)] complexes showed the dithiolene LMCT absorption in the range of 605-644 nm (ε = 7000-9200 M−1 cm−1) and very strong absorption due to their pyridinium-dicyanomethylide moieties in near-UV region (e.g. 1b: λmax = 470 nm, ε = 43,400 M−1 cm−1). The CV of the all dicyanomethylated complexes exhibited two reduction waves. The first reduction is due to CoIII/CoII and the second one is due to the reduction of the pyridinium-dicyanomethylide moiety. The reduced 1b is stable enough for several minutes according to the visible spectroelectrochemical measurement. The ESR spectrum of 1b indicated eight hyperfine splittings due only to the interaction with the nuclear spin of cobalt (I = 7/2).  相似文献   

15.
{[(N-Methyl-N-p-R-benzyl)amino]benzyl}ferrocenes 4ac (R = H(a), OCH3(b), CH3(c)) were synthesized by N-methylation of the corresponding sec-amines 3acwith the reagent CH3I-t-BuOK. Treatment of 4ac with Na2PdCl4 in the presence of NaOAc produced a pair of palladacycles σ-Pd[(η5-C5H5)Fe(η5- C5H3CH(C6H5)N(CH3)CH2-C6H4-R)]Cl(PPh3) 5ac (R = same as before) consisting of RNRP and SNSP configurations. The structure of 5a was determined by single crystal X-ray analysis. High catalytic activities of 5ac for the Suzuki coupling of aryl chlorides with phenylboronic acid and the Heck reaction of bromobenzene with styrene were observed.  相似文献   

16.
Six novel organotin(IV) carboxylates have been successfully synthesized, namely, the polymer (C6H5)3Sn(L1) (1) [HL1 = 4-imidazolyl benzoic acid], the mononuclear (C6H5)3Sn(L2) (2) [HL2 = 4-pyrazolylbenzoic acid], (C6H5)3Sn(L3)·CH3OH (3) [HL3 = 4-triazolylbenzoic acid] and (C6H5)3Sn(L4) (4) [HL4 = 4-tetrazolyl benzoic acid] and the tetranuclear [(n-Bu2Sn)4(L2)2O2(OCH3)2] (5) and [(n-Bu2Sn)4(L3)2O2(OCH3)2] (6). X-ray diffraction analyses show 1D infinite chain of polymer 1, single molecular structures of isomorphous complexes 2 and 4, single molecule structures of complex 3 containing solvent CH3OH molecule and similar ladder-type structures of complexes 5 and 6. The photoluminescence of ligands and 1-6 were also measured in the solid state at room temperature.  相似文献   

17.
Six new chiral triorganotin(IV) complexes, {(R3Sn)2[C3H6(COO)2]}n (R = Me: 1; Bu: 2), {(R3Sn)2[C4H8(COO)2]}n (R = Me: 3; Bu: 4), and {(R3Sn)2[C2H4O(COO)2]}n (R = Me: 5; Bu: 6) have been prepared by treatment of (R)-(+)-methylsuccinic acid, (S)-(+)-methylglutaric acid and l-(−)-malic acid, with the corresponding R3SnCl (R = Me, Bu) and sodium ethoxide in methanol. All the complexes were characterized by elemental analysis, FT-IR, NMR (1H, 13C, 119Sn) spectroscopy and TGA. Except for 3, all of the complexes were also characterized by X-ray crystallography. The structural analyses reveal that complexes 1 and 5 have 2D network structures in which (R)-(+)-methylsuccinic acid and l-(−)-malic acid act as tetradentate ligands coordinated to trimethyltin(IV) ions. Complexes 2 and 4 have 3D metal-organic framework structures in which the deprotoned acids serve as tetradentate ligands. Complex 6 adopts a 1D zigzag chain structure and forms a 2D supramolecular framework through intermolecular C-H?O interactions. In addition, the antitumor activities of complexes 1-6 have been studied. We also have measured the specific rotation of the chiral dicarboxylic acids and the organotin derivatives.  相似文献   

18.
A series of lanthanide(III) complexes with chelidamic acid ligand, [Ln(C7H2NO5)·3H2O]n·nH2O (Ln = La (1), Y (2), Sm (3), and Nd (4)), [Gd2(C7H2NO5)3·4H2O]n·2nH2O (5) and [Ce(C7H2NO5)·1.5H2O]n (6), have been synthesized by hydrothermal method and structurally characterized by single-crystal X-ray diffraction. Complexes 14 are isostructural and possess 2D framework. Complex 5 contains two different Gd(III) ions linked through carboxylate group to form a 2D framework. Complex 6 exhibits a (44) topology 2D network. The variable-temperature magnetic properties of 3 and 5 have been investigated. Furthermore, the photoluminescent properties of 1, 2, 3, and 5 at room temperature were also studied.  相似文献   

19.
Shigeo Sugiyama 《Tetrahedron》2007,63(48):12047-12057
Intramolecular acyl transfer of (R)-5-(α-methylbenzyl)amino-1,3-dioxan-2-one (2) by treatment with DBU in CD2Cl2, CDCl3, C6D6, CD3CN, CD3NO2, DMSO-d6, DMF, THF-d8, iPrOH, and tBuOH at room temperature afforded (4SR)-4-hydroxymethyl-3-α-methylbenzyl-2-oxazolidinone [(4S)-3] in moderate to quantitative yields with 58-94% de via an asymmetric desymmetrization process. Treatment of 2 with DBU and Cs2CO3 in MeOH and EtOH gave (4S)-3 and (4R)-3 without diastereoselectivities. Acidic treatment of 2 using HCO2H, AcOH, EtCO2H, iPrCO2H, tBuCO2H, and C6F5OH in CDCl3 gave (4S)-3 in moderate diastereoselectivities (26-52% de). First-order kinetics were observed in the reaction of 2 to (4S)-3 with DBU in CDCl3 and THF-d8.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号