首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E factors, green chemistry and catalysis: an odyssey   总被引:2,自引:0,他引:2  
The development of green chemistry is traced from the introduction of the concepts of atom economy (atom utilisation) and E factors in the early 1990s. The important role of catalysis in reducing or eliminating waste is emphasised and illustrated with examples from heterogeneous catalytic oxidations with hydrogen peroxide, homogeneous catalytic oxidations and carbonylations and organocatalytic oxidations with stable N-oxy radicals. Catalytic reactions in non-conventional media, e.g. aqueous biphasic, supercritical carbon dioxide and ionic liquids, are presented. Biotransformations involving non-natural reactions of enzymes, e.g. ester ammoniolysis, and the rational design of semi-synthetic enzymes, such as vanadate phytase, are discussed. The optimisation of enzyme properties using in vitro evolution and improvement of their operational stability by immobilisation as cross-linked enzyme aggregates (CLEA) are presented. The ultimate in green chemistry is the integration of catalytic steps into a one-pot, catalytic cascade process. An example of a chemoenzymatic synthesis of an enantiomerically pure amino acid in water and a trienzymatic cascade process using a triple-decker oxynitrilase/nitrilase/amidase CLEA are discussed. Finally, catalytic conversions of renewable raw materials are examined and the biocatalytic aerobic oxidation of starch to carboxy starch is presented as an example of green chemistry in optima forma i.e. a biocompatible product from a renewable raw material using a biocatalytic air oxidation.  相似文献   

2.
While belonging to the most fundamental functional groups, nitriles represent a class of compound that still raises challenges in terms of an efficient, cost-effective, general and, at the same time, sustainable way for their synthesis. Complementing existing chemical routes, recently a cyanide-free enzymatic process technology based on the use of an aldoxime dehydratase (Oxd) as a biocatalyst component has been developed and successfully applied for the synthesis of a range of nitrile products. In these biotransformations, the Oxd enzymes catalyze the dehydration of aldoximes as readily available substrates to the nitrile products. Herein, these developments with such enzymes are summarized, with a strong focus on synthetic applications. It is demonstrated that this biocatalytic technology has the potential to “cross the bridge” between the production of fine chemicals and pharmaceuticals, on one hand, and bulk and commodity chemicals, on the other.  相似文献   

3.
The combination of isolated enzymes and whole cells for chemical biomanufacturing has recently arose as an alternative with multiple industrial advantages. Both isolated enzymes and whole-cell biocatalysis have benefits of their own that can be synergistically used in more efficient and sustainable bioprocesses. Those benefits range from decreasing the production times to generating products that are otherwise unobtainable. In this review we have studied the reports of cell–enzyme tandem systems applied as biocatalysts focusing on the different architectures used for their coupling. Combination of extracellular enzymes and microorganisms, enzyme display on whole cell walls and integration of enzymes and microorganisms into different materials are presented as the available alternatives for tandem enzyme–cell systems’ biotransformations.  相似文献   

4.
This article summarizes the enzyme‐catalyzed synthesis and chemical recycling of biodegradable aliphatic polyesters and poly(carbonate ester)s directed towards establishing green polymer chemistry. Lipase catalyzes the condensation polymerization of a hydroxy acid, diacid with diol, diacid anhydride with oxirane, and polyanhydride with diol, or the ring‐opening polymerization of lactones of small to large rings, and a cyclic diester to produce the corresponding polyesters. Also, lipase catalyzes the condensation polymerization of a dialkyl carbonate with diol, and the ring‐opening polymerization of a cyclic carbonate to produce the corresponding polycarbonates. These polyesters and polycarbonates were selectively degraded by lipase to produce repolymerizable oligomers. These chemical recycling systems using an enzyme will establish a novel methodology for sustainable polymer recycling. Finally, current trends in green polymer production using enzymes are discussed.  相似文献   

5.
曹宇飞  戈钧 《催化学报》2021,42(10):1625-1633
工业生物催化面临两大重要挑战,一是可工业应用的酶催化反应类型仍然比较有限,远少于化学催化剂,因此需要拓展酶催化的反应类型;二是酶在苛刻的工业催化反应条件下尤其是在高温、有机溶剂、不适宜的pH等环境下稳定性较差,因此需要提高工业酶催化剂的稳定性.研究者已经开发了很多方法,以解决这两方面难题,例如酶的定向进化、定点突变、酶的计算机从头设计和构建人工金属酶等.本文系统介绍了本课题组开发的酶复合催化剂原位合成方法及其生物催化应用,期望为解决工业生物催化的上述挑战提供新思路.原位合成是构建酶-无机晶体复合催化剂的一种简便、高效、普适的方法.酶-无机晶体复合物中,限域包埋使酶具有高于常规固定化酶的催化活性和稳定性.该方法可以简便拓展至其它多种类型的无机晶体材料,显著提高酶的稳定性.无机晶体的限域包埋对酶分子结构和性能有着重要影响,通过理性设计复合催化剂的结构,可实现对酶的活性、稳定性以及多酶反应级联效率的有效调控.本课题组采用分子模拟和实验相结合的方法阐释了多酶-无机晶体复合催化剂所驱动的级联反应效率提高的关键因素.通过调控原位合成中金属离子和有机配体的浓度,实现了酶分子在缺陷型甚至无定形载体中的包埋.在此基础上,深入探讨了缺陷对酶分子结构和催化活性的调控机制,为酶复合催化剂的理性设计提供了依据.同样基于原位合成方法,本课题组构建了酶-金属团簇复合催化剂,实现了温和条件下酶催化和金属催化的高效耦合和协同.以脂肪酶-钯团簇复合催化剂为例,阐明了酶-金属团簇复合催化剂中二者相互作用对酶分子结构和活性以及金属催化活性的影响机制,为酶催化和金属催化相融合的研究提供了重要基础.我们对这一领域存在的挑战和未来重要的研究方向也进行了讨论,希望本文可以从催化剂工程角度为高效酶催化剂的设计以及生物催化应用领域的拓展提供新思路,推动该领域发展.  相似文献   

6.
A series of enzymes for Kemp elimination of 5-nitrobenzisoxazole has been recently designed and tested. In conjunction with the design process, extensive computational analyses were carried out to evaluate the potential performance of four of the designs, as presented here. The enzyme-catalyzed reactions were modeled using mixed quantum and molecular mechanics (QM/MM) calculations in the context of Monte Carlo (MC) statistical mechanics simulations. Free-energy perturbation (FEP) calculations were used to characterize the free-energy surfaces for the catalyzed reactions as well as for reference processes in water. The simulations yielded detailed information about the catalytic mechanisms, activation barriers, and structural evolution of the active sites over the course of the reactions. The catalytic mechanism for the designed enzymes KE07, KE10(V131N), and KE15 was found to be concerted with proton transfer, generally more advanced in the transition state than breaking of the isoxazolyl N-O bond. On the basis of the free-energy results, all three enzymes were anticipated to be active. Ideas for further improvement of the enzyme designs also emerged. On the technical side, the synergy of parallel QM/MM and experimental efforts in the design of artificial enzymes is well illustrated.  相似文献   

7.
This review summarizes some of the various efforts to synthesize defined secondary structures with unnatural building blocks. These molecules are intended to mimic the molecular architecture of naturally occurring biopolymers while displaying (or even improving) biological function. After a general introduction into the principles of protein structure including the concepts of hierarchy and cooperativity, several examples of the synthesis of defined secondary structures are given. In particular, β‐peptides have received considerable attention as a class of molecules with defined structural elements, such as helices and sheets. Finally, preliminary studies towards tertiary structure and biological applications of β‐peptides and semisynthetic enzymes are presented and the increased stability of β‐peptides over their α‐analogues is discussed.  相似文献   

8.
The deactivation of degrading and pectinolytic enzymes is crucial in the fruit juice industry. In commercial fruit juice production, a variety of approaches are applied to inactivate degradative enzymes. One of the most extensively utilized traditional procedures for improving the general acceptability of juice is thermal heat treatment. The utilization of a non-thermal pulsed electric field (PEF) as a promising technology for retaining the fresh-like qualities of juice by efficiently inactivating enzymes and bacteria will be discussed in this review. Induced structural alteration provides for energy savings, reduced raw material waste, and the development of new products. PEF alters the α-helix conformation and changes the active site of enzymes. Furthermore, PEF-treated juices restore enzymatic activity during storage due to either partial enzyme inactivation or the presence of PEF-resistant isozymes. The increase in activity sites caused by structural changes causes the enzymes to be hyperactivated. PEF pretreatments or their combination with other nonthermal techniques improve enzyme activation. For endogenous enzyme inactivation, a clean-label hurdle technology based on PEF and mild temperature could be utilized instead of harsh heat treatments. Furthermore, by substituting or combining conventional pasteurization with PEF technology for improved preservation of both fruit and vegetable juices, PEF technology has enormous economic potential. PEF treatment has advantages not only in terms of product quality but also in terms of manufacturing. Extending the shelf life simplifies production planning and broadens the product range significantly. Supermarkets can be served from the warehouse by increasing storage stability. As storage stability improves, set-up and cleaning durations decrease, and flexibility increases, with only minor product adjustments required throughout the manufacturing process.  相似文献   

9.
A general methodology for the determination of all possible stereoisomers of heteronuclear clusters is reported. The paper is divided into three parts: (1) nomenclature—wherein a systematic numbering system for multi-component clusters under which each and every stereoisomer of a given cluster can be uniquely identified is presented; (2) methodology—wherein the general principles for the determination of symmetry analogs are discussed; and (3) computer algorithm—wherein the implementation of the symmetry principles is described. These principles and algorithms are applied to binary (two-component) systems using octahedral and icosahedral clusters as examples.  相似文献   

10.
There is an increasing need for new, efficient and cheap chemical catalysts, as part of the emerging “green” chemistry field. Living organisms provide a wealth of fascinating enzymes, with exceptional catalytic efficiencies and selectivities, which can be either directly exploited in biotechnological synthetic systems or imitated by chemists. The bioinspired catalysis approach exploits the basic chemical principles on which a biological enzyme active site is built in order to generate original functional analogs of this site. This is illustrated here with a molecular electrode material inspired from hydrogenases, metalloenzymes involved in hydrogen metabolism, and displaying exceptional electrocatalytic properties for hydrogen production and oxidation, thus with potential applications for electrolyzer and fuel cell technologies.  相似文献   

11.
To facilitate production of functional enzymes and to study their mechanisms, especially in the complex cases of coenzyme‐dependent systems, activation of an inactive apoenzyme preparation with a catalytically competent coenzyme intermediate is an attractive strategy. This is illustrated with the simple chemical synthesis of a flavin‐methylene iminium compound previously proposed as a key intermediate in the catalytic cycle of several important flavoenzymes involved in nucleic acid metabolism. Reconstitution of both flavin‐dependent RNA methyltransferase and thymidylate synthase apoproteins with this synthetic compound led to active enzymes for the C5‐uracil methylation within their respective transfer RNA and dUMP substrate. This strategy is expected to be of general application in enzymology.  相似文献   

12.
《Analytical letters》2012,45(10):1825-1852
Abstract

A general view of the electroanalytical applications of metal‐salen complexes is discussed in this review. The family of Schiff bases derived from ethylenediamine and ortho‐phenolic aldehydes (N,N′‐ethylenebis(salicylideneiminato)—salen) and their complexes of various transition metals, such as Al, Ce, Co, Cu, Cr, Fe, Ga, Hg, Mn, Mo, Ni, and V have been used in many fields of chemical research for a wide range of applications such as catalysts for the oxygenation of organic molecules, epoxidation of alkenes, oxidation of hydrocarbons and many other catalyzed reactions; as electrocatalyst for novel sensors development; and mimicking the catalytic functions of enzymes. A brief history of the synthesis and reactivity of metal‐salen complexes will be presented. The potentialities and possibilities of metal‐Salen complexes modified electrodes in the development of electrochemical sensors as well as other types of sensors, their construction and methods of fabrication, and the potential application of these modified electrodes will be illustrated and discussed.  相似文献   

13.
The resolution of the bicyclic synthon (rac)-γ-lactam (2-azabicyclo[2.2.1]hept-5-en-3-one) is an important step in the synthesis of a group of chemotherapuetic agents known as carbocyclic nucleosides. The archaeon Sulfolobus solfataricus MT4 produces a thermostable γ-lactamase that has a high sequence homology to the signature amidase family of enzymes. It shows similar inhibition patterns of amidases towards benzonitrile, phenylmethylsulfonyl fluoride and heavy metals such as Hg2+, and is activated by thiol reagents. The enzyme selectively cleaves the (+)-enantiomer from a racemic mix of γ-lactam. It also exhibits general amidase activity by cleaving linear and branched aliphatic and aromatic amides. The enzyme catalyses the synthesis of benzoic hydrazide from benzamide preferentially to benzamide cleavage in the presence of excess hydrazine. This enzyme has potential for use in industrial biotransformations in the production of both carbocyclic nucleosides and hydrazides.  相似文献   

14.
Fundamental principles of chemical transport reactions (CVT) are described including the historical development. Typical transport reactions are regarded with respect to general principles and the thermodynamic background. Some practical aspects (Mond process, halide lamps, hydrothermal synthesis) are discussed.  相似文献   

15.
Amide bond formation is one of the most important reactions in pharmaceutical synthetic chemistry. The development of sustainable methods for amide bond formation, including those that are catalyzed by enzymes, is therefore of significant interest. The ATP‐dependent amide bond synthetase (ABS) enzyme McbA, from Marinactinospora thermotolerans, catalyzes the formation of amides as part of the biosynthetic pathway towards the marinacarboline secondary metabolites. The reaction proceeds via an adenylate intermediate, with both adenylation and amidation steps catalyzed within one active site. In this study, McbA was applied to the synthesis of pharmaceutical‐type amides from a range of aryl carboxylic acids with partner amines provided at 1–5 molar equivalents. The structure of McbA revealed the structural determinants of aryl acid substrate tolerance and differences in conformation associated with the two half reactions catalyzed. The catalytic performance of McbA, coupled with the structure, suggest that this and other ABS enzymes may be engineered for applications in the sustainable synthesis of pharmaceutically relevant (chiral) amides.  相似文献   

16.
This review will cover the entire hit identification process performed with biocompatible, aqueous solvated, poly[ethylene glycol] (PEG) based resins - from synthesis, through screening, to analysis. The different types of resins (including their preparation) will be discussed and compared individually. Examples of one-bead-one-compound substrate libraries will be presented, as will one-bead-two-compounds libraries used for the discovery of enzyme inhibitors. The review includes a section covering organic and bio-organic reactions performed on all-PEG resins and discusses on-bead screening of the libraries with biomolecules. Finally, analysis of compounds on single beads, either via investigation by on-bead NMR or by ladder-coding of the combinatorial compound is covered. In general, the review will focus on chemistry, libraries, synthesis, screening, and analysis, using all-PEG based resins.  相似文献   

17.
Schiff bases are aldehyde or ketone like compounds in which the carbonyl group is replaced by imine or azomethine group. They are widely used for industrial purposes and also exhibit a broad range as extractants. A general view of solvent extraction applications of complexes is discussed in this review. The family of Schiff bases and their extraction of various transition metals such as Co, Cu, Cr, Fe, Ga, Hg, Mn, Mo and Ni are discussed. A brief history of the synthesis and reactivity of Schiff bases will be presented. Factors on solvent extraction will be illustrated and discussed.  相似文献   

18.
Racemization is the key step to turn a kinetic resolution process into dynamic resolution. A general strategy for racemization under mild reaction conditions by employing stereoselective biocatalysts is presented, in which racemization is achieved by employing a pair of stereocomplementary biocatalysts that reversibly interconvert an sp3 to a sp2 center. The formal interconversion of the enantiomers proceeds via a prochiral sp2 intermediate the formation of which is catalyzed either by two stereocomplementary enzymes or by a single enzyme with low stereoselectivity. By choosing appropriate reaction conditions, the amount of the prochiral intermediate is kept to a minimum. This general strategy, which is applicable to redox enzymes (e.g., by acting on R2CHOH and R2CHNHR groups) and lyase-catalyzed addition-elimination reactions, was proven for the racemization of secondary alcohols by employing alcohol dehydrogenases. Thus, enantiopure chiral alcohols were used as model substrates and were racemized either with highly stereoselective biocatalysts or by using (rarely found) non-selective enzymes.  相似文献   

19.
金属有机骨架材料的合成及应用   总被引:6,自引:0,他引:6  
金属有机骨架(MOFs) 材料是目前研究很热的一种新功能材料。本文讨论了金属有机骨架材料的设计原理、制备过程、骨架结构的影响因素以及骨架合成的发展状况,总结了金属有机骨架材料在催化剂、气体的储存和分离方面的应用,并对这种新型多功能材料在设计、合成与应用中的广阔前景做了展望。  相似文献   

20.
A sunlight‐powered process is reported that employs carbon dots (CDs) as light absorbers for the conversion of lignocellulose into sustainable H2 fuel and organics. This photocatalytic system operates in pure and untreated sea water at benign pH (2–8) and ambient temperature and pressure. The CDs can be produced in a scalable synthesis directly from biomass itself and their solubility allows for good interactions with the insoluble biomass substrates. They also display excellent photophysical properties with a high fraction of long‐lived charge carriers and the availability of a reductive and an oxidative quenching pathway. The presented CD‐based biomass photoconversion system opens new avenues for sustainable, practical, and renewable fuel production through biomass valorization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号