首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Absorption of an intense short laser pulse by targets consisting of a bungle of carbon nanofilaments either parallel or converging to the vertex of a cone has been numerically simulated. Such targets efficiently generate a flux of relativistic electrons propagating along filaments and following their bends. The focusing of fluxes from several filaments to one flux makes it possible to reduce the transverse size of an electron bunch as compared to the diameter of the laser beam. The energy flux density of electrons in such a bunch propagating along one nanofilament is several times higher than the energy flux density of the laser pulse.  相似文献   

2.
The formation and acceleration of electron bunches resulting from the self-injection of electrons into the wake wave from the laser pulse moving through a sharp plasma boundary are investigated in one-dimensional geometry. It is shown that electron trapping in the accelerating wakefield is governed by the electron energy and has a threshold character. The acceleration of the trapped bunch is numerically simulated.  相似文献   

3.
For the purpose of laser wakefield acceleration, it turns out that the injection of electron bunches longer than the plasma wavelength can also generate accelerated femtosecond bunches with a relatively low energy spread. This is of great interest because such injecting bunches can be provided, e.g., by photo cathode rf linacs. Here we show that when an e-bunch is injected into the wakefield, it is important to take into account the interaction of the injected bunch with the laser pulse in the vacuum region located in front of the plasma. We show that at low energies of the injected bunch, this leads to ponderomotive scattering of the bunch and results in a significant drop of the collection efficiency. For certain injection energies the ponderomotive scattering may result in a smaller energy spread in the accelerated bunch. It is found that the injection position in the laser wakefield plays an important role. Higher collection efficiency can be obtained for certain injection energies, when the bunch is injected in plasma at some distance from the laser pulse; the energy spread, however, is typically larger in this case. We also estimate the minimum trapping energy for the injected electrons and the length of the trapped bunch. PACS 52.38.Kd; 41.75.Jv; 41.85.Ar  相似文献   

4.
采用实验和数值模拟研究了飞秒激光辐照铝靶产生的快电子发射。实验中,在主脉冲前加上一个预脉冲产生预等离子体,然后主脉冲与预等离子体作用产生快电子。在激光反射方向附近,实验测量的快电子束发射与数值模拟的结果高度地一致;在靶背面,发射的快电子的数目小于数值模拟的结果,原因在于快电子在靶内输运受到电荷分离场和碰撞的影响;在数值模拟中未出现的,沿靶表面发射的快电子束,是由表面准静态电磁场的禁闭效应产生。  相似文献   

5.
A preplasma plays a very important role in laser-driven proton acceleration, where it can increase the proton energy significantly. In this research, we generated a nearly planar preplasma intentionally by sending an uncompressed picosecond-long Ti:sapphire laser pulse with a large spot size onto a thin foil target (Al and mylar) and investigated the characteristics of the preplasma by using a space-time-resolved Nomarski interferometer. In this paper, a simple analytical approach employing the one-dimensional collisional plasma concept was also developed and its result is compared with the experimental results. This work reveals the detailed characteristics of the behavior of the planar preplasma, which is very important in laser-driven proton acceleration, X-ray laser, etc., employing laser-solid interactions.  相似文献   

6.
白易灵  张秋菊  田密  崔春红 《物理学报》2013,62(12):125206-125206
用一维粒子模拟程序对功率密度在1022 W/cm2以上的超强激光驱动薄膜靶产生的相对论电子层及其经过汤姆孙散射产生的阿秒X射线进行了研究. 结果表明, 在超相对论强度范围下增大驱动激光强度, 相应减小等离子体密度及厚度可使电子层获得更高纵向动量, 使汤姆孙散射光明显向更短波长移动. 优化相关参数得到了波长为 1.168 nm的阿秒脉冲. 经过对倍频探测光方案与驱动光以及薄膜靶参数进行综合考虑和优化, 得到的X射线相干辐射波长有效减小到0.4 nm以下, 产生的光子能量达到2 keV以上. 关键词: 超相对论强度激光 阿秒X射线 相对论电子层 汤姆孙后向散射  相似文献   

7.
We have proposed an efficient scheme of generation of short dense electron bunches during the interaction at large angles of incidence of a laser pulse with a thin transversally semibounded laser target. Streams of bunches can be used to simultaneously and independently generate pulsed X-ray radiation as fast electrons hit secondary targets. Dependences of bunch parameters (the number of particles in the bunch and the bunch energy and thickness) on the angle of incidence and laser intensity have been obtained. It has been shown that, upon reflection from the target, the relativistic-intensity laser wave is efficiently converted (the energy-conversion factor reaches ~20%) into a sequence of electromagnetic tens-of-nanometer-long atto pulses, which follow one after another in the period of the initial laser wave. We have investigated how the parameters of the atto pulse depend on the angle of incidence and the laser intensity. We have shown that atto pulses are generated most efficiently at large angles of incidence (≥50°) of the laser pulse on the target.  相似文献   

8.
Electron acceleration due to a wakefield excited by a ultrashort-pulse intense laser propagating through a finite-length underdense plasma layer is studied by two-dimensional particle-in-cell simulation. The electron energy distribution is analyzed for moderate to high intensity. For the electron density, where the pulse length is almost half of the plasma wavelength, dramatic changes of the density structure occur with cavity and bunch formation with an increase in the laser intensity, also leading to the appearance of a fast electron component well confined in phase space. The analytical form of the fast electron energy spectrum is also presented.  相似文献   

9.
采用实验和数值模拟研究了飞秒激光辐照铝靶产生的快电子发射.实验中,在主脉冲前加上一个预脉冲产生预等离子体,然后主脉冲与预等离子体作用产生快电子.在激光反射方向附近,实验测量的快电子束发射与数值模拟的结果高度地一致;在靶背面,发射的快电子的数目小于数值模拟的结果,原因在于快电子在靶内输运受到电荷分离场和碰撞的影响;在数值模拟中未出现的,沿靶表面发射的快电子束,是由表面准静态电磁场的禁闭效应产生.  相似文献   

10.
激光驱动中子源由于中子通量高、短脉冲等特点受到广泛关注。通过辐射流体动力学、粒子动力学和蒙特卡罗三种数值模拟程序的组合使用,对超短强激光与铜靶作用产生光核中子进行了全物理过程模拟。首先使用辐射流体动力学程序获得激光预脉冲产生的预等离子体密度分布,然后将预等离子体输入粒子动力学程序获得超短强激光主脉冲产生的超热电子信息,最后将超热电子输入蒙特卡罗程序得到光核中子。模拟获得了光核中子的产额、能谱和角分布信息,发现采用强度1022 W/cm2激光、直径和厚度均为4 cm的Cu圆柱靶,可以获得产额为1.2108/J的光核中子。  相似文献   

11.
The theoretical limits on efficiency and energy spread of the laser-wakefield accelerator are investigated using a one-dimensional model. Modifications, both of the wakefield due to the electron bunch, and of the laser pulse shape due to the varying permittivity of the plasma, are described self-consistently. It is found that a short laser pulse gives a higher efficiency than a long laser pulse with the same initial energy. Energy spread can be minimized by optimizing bunch length and bunch charge such that the variation of the accelerating force along the length of the bunch is minimized. An inherent trade-off between energy spread and efficiency exists.  相似文献   

12.
We present a new method to generate steady and tunable, coherent, broadband terahertz radiation from a relativistic electron beam modulated by a femtosecond laser. We have demonstrated this in the electron storage ring at the Advanced Light Source. Interaction of an electron beam with a femtosecond laser pulse copropagating through a wiggler modulates the electron energies within a short slice of the electron bunch with about the same duration of the laser pulse. The bunch develops a longitudinal density perturbation due to the dispersion of electron trajectories, and the resulting hole emits short pulses of temporally and spatially coherent terahertz pulses synchronized to the laser. We present measurements of the intensity and spectra of these pulses. This technique allows tremendous flexibility in shaping the terahertz pulse by appropriate modulation of the laser pulse.  相似文献   

13.
The process of Thomson scattering of an ultra-intense laser pulse by a relativistic electron bunch has been proposed as a way to obtain a bright source of short, tunable and quasi-monochromatic X-ray pulses. The real applicability of such a method depends crucially on the electron-beam quality, the angular and energetic distributions playing a relevant role. In this paper we present the computation of the Thomson-scattered radiation generated by a plane-wave, linearly polarized and flat-top laser pulse, incident on a counterpropagating electron bunch having a sizable angular divergence and a generic energy distribution. Both linear and nonlinear Thomson-scattering regimes are considered and the impact of the rising front of the pulse on the scattered-radiation distribution has been taken into account. Simplified relations valid for long laser pulses and small values of both scattering angle and bunch divergence are also reported. Finally, we apply the results to the cases of backscattering with electron bunches typically produced with both standard radio-frequency-based accelerators and laser–plasma accelerators.  相似文献   

14.
本文提出用固体靶前放置薄膜靶来实现激光场放大的新方案, 研究了针对单束激光脉冲条件的俘获及放大机理. 理论模型与数值模拟均表明入射激光能量可以部分地以驻波形式驻留在靶间区域并得到有效放大. 研究表明在入射激光光压、俘获激光光压和电荷分离场的共同作用下, 薄膜靶电子层压缩和膨胀是能量积累存在反复振荡过程的直接原因, 经过振荡后激光脉冲得到稳定俘获.  相似文献   

15.
穆洁  盛政明  郑君  张杰 《物理学报》2013,62(13):135202-135202
本文提出采用了强激光与细锥形靶作用, 产生大量定向高能电子, 用于快点火激光聚变方案研究. 通过PIC 模拟, 研究了细锥靶和激光脉冲的各项参数, 对产生高能电子的影响. 模拟发现, 细锥靶开口10° 时能够产生较多的高能电子, 当开口角度逐渐增大时, 高能电子的能量和数目都有一定程度下降. 若为细锥靶加上预等离子体, 产生的高能电子的数目将大大提高, 而最高的电子能量将会下降. 中等能量的电子加速主要由于激光有质动力加速, 而高能量的电子加速主要由于电子感应加速. 随着激光脉宽的增加, 高能电子的数量直线上升. 关键词: 细锥形靶 电子加速 感应共振加速  相似文献   

16.
Behaviour of a relativistic electron bunch, injected and trapped in a high intensity optical lattice resulting from the interference of two laser beams is studied. The optical lattice modifies the phase space distribution of the electron bunch due to the trapping and compression of the electrons by a ponderomotive force. High-frequency longitudinal beam eigenmodes of the trapped electron bunch are described in the framework of fluid and kinetic models. Such beam oscillations are expected to play a pivotal role in a stimulated Raman scattering of laser beams on the electrons.  相似文献   

17.
《Current Applied Physics》2015,15(3):242-247
A theoretical examination on coherent transition radiations (CTR) from the surface of thin solid density target irradiated by high intensity laser is presented. The theory is extended to consider the expansion dynamics of thin foils. The motion of target surfaces leads to the modulation on the temporal structure of micro bunches in the electron beam as well as the spectrum of CTR. The spectral shifts of radiation are owing to the enhancement of electron bunch separation and the relativistic Doppler effects. The radiation power distribution is strongly affected by the temporal coherence of electron beam structure, so thus the electron temperature and velocity dispersions. With these effects accounted for, the spectral properties of coherent transition radiation can provide insights into the expansion of thin foil targets irradiated by intense laser pulse as well as the fast electron transport through it.  相似文献   

18.
乔秀梅  张国平 《中国物理》2007,16(5):1370-1373
The Ni-like Ag 13.9nm x-ray laser has been previously demonstrated that the higher gain near critical surface contributes little to the amplification of the x-ray laser because of severe refraction. In this paper, the transient collision excitation (TCE) Ni-like Ag 13.9nm x-ray laser is simulated, driven by two 3ps short pulse preceded by a 330ps long prepulse, optimization of the peak to peak delay time of the two short pulses is made to get the best results. Simulation indicates that by producing lowly ionized preplasma with smoothly varying electron density, it is possible to decrease electron density gradient in higher density region, and thus higher gains near this region could be utilized, and if the main short pulse is delayed by 900ps, local gains where electron density larger than ~ 4×1020cm-3 could be utilized.  相似文献   

19.
Acceleration of ions in a solitary wave produced by shock-wave decay in a plasma slab irradiated by an intense picosecond laser pulse is studied via particle-in-cell simulation. Instead of exponential distribution as in known mechanisms of ion acceleration from the target surface, these ions accelerated forwardly form a bunch with relatively low energy spread. The bunch is shown to be a solitary wave moving over expanding plasma; its velocity can exceed the maximal velocity of ions accelerated forward from the rear side of the target.  相似文献   

20.
Multi-MeV ion production from the interaction of a short laser pulse with a high-density plasma, accompanied by an underdense preplasma, has been studied with a particle-in-cell simulation and good agreement is found with experiment. The mechanism primarily responsible for the acceleration of ions is identified. Comparison with experiments sheds light on the ion-energy dependence on laser intensity, preplasma scale length, and relative ion energies for a multi-species plasma. Two regimes of maximum ion-energy dependence on laser intensity, I, have been identified: subrelativistic, ∝I; and relativistic, ∝. Simulations show that the energy of the accelerated ions versus the preplasma scale length increases linearly and then saturates. In contrast, the ion energy decreases with the thickness of the solid-density plasma. Received: 13 December 2001 / Published online: 7 February 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号