首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
原位TiB晶须增强钛基复合材料的磨损机制   总被引:1,自引:1,他引:0  
将自蔓延和熔模精铸方法相结合,制备了原位TiB晶须增强钛基复合材料;采用X射线衍射仪和扫描电子显微镜分析了复合材料的相组成和显微组织,结合磨损表面、磨屑形貌及剖面显微组织分析结果探讨了复合材料表面的磨损机制;采用销-盘式摩擦磨损试验机评价了复合材料的耐磨性能.结果表明:TiB晶须尺寸细小、长径比大、在基体中分布均匀;与基体合金相比,钛基复合材料的耐磨性能显著提高,这是由于TiB晶须具有增强作用和承载作用所致.  相似文献   

2.
增强颗粒对铝基复合材料摩擦学性能的影响   总被引:16,自引:3,他引:16  
采用自制的摩擦磨损试验机考察了增强颗粒对铝基复合材料摩擦磨损性能的影响。结果表明:在基体合金、陶瓷颗粒尺寸和体积分数相同的条件下,SiC增强铝基复合材料的摩擦磨损性能优于Al2O3增强铝基复合材料;增大颗粒尺寸或增加颗粒体积分数均使得SiC颗粒增强铝基复合材料的平均摩擦系数略有降低,耐磨性能提高;在与半金属摩擦材料配副时,颗粒增强铝基复合材料的摩擦系数与基体合金的相近,耐磨性能提高了3个数量级。  相似文献   

3.
Ni3Al基自润滑复合材料摩擦学性能的研究   总被引:1,自引:1,他引:0  
采用真空热压烧结方法制备了Ni3Al基自润滑复合材料,通过HT-1000型球盘式高温摩擦仪分别测试了不同条件下Ni3Al基自润滑复合材料的摩擦磨损性能.结果表明:复合材料在20~1 000℃均具有良好的自润滑性能,其摩擦系数在0.24~0.43之间.研究发现复合材料在低载(5 N、滑动速度为0.2 m/s)低温(20~400℃)下具有最低的摩擦系数(0.24~0.29),但在低载高温下(600℃以上)摩擦系数较高(0.39~0.41);而在高载(20 N)时在整个温度测试区间(20~1 000℃)拥有低而稳定的摩擦系数(0.28~0.31).Ni3Al基自润滑材料优异的高温摩擦学性能归因于高温下材料摩擦表面形成的银、氟化物、氧化物以及钼酸盐等低剪切化合物的协同润滑作用.  相似文献   

4.
采用快速热压烧结方法成功制备了原位生成MoB增强的Cu-Sn-Al合金复合材料,研究了增强体添加含量对复合材料体系摩擦学性能的影响,并对其摩擦磨损机制进行了分析.研究表明:在Cu-5Sn合金基体中添加MoAlB陶瓷颗粒后,烧结过程中,层状结构MoAlB陶瓷中的Al元素能够扩散到基体中,生成原位MoB增强Cu-Sn-Al合金复合材料.此外,复合材料体系的硬度随着MoAlB添加量的增加逐渐提高,与Cu-5Sn合金相比,当添加MoAlB质量分数为30%时,复合材料硬度值提高了约5倍.同时,随着添加MoAlB陶瓷颗粒含量的增加,复合材料体系摩擦系数和磨损率逐渐降低,当添加的MoAlB陶瓷颗粒质量分数为30%时,复合材料摩擦系数和磨损率分别低至0.33和5.4×10-5 mm3/(N·m).由于原位生成MoB颗粒的钉扎效应,在摩擦过程中能够抑制基体材料的塑性变形,使得材料体系的硬度显著提高,磨损率明显降低,摩擦过程中表面生成的摩擦氧化物,能够降低材料体系的黏着磨损和二体磨粒磨损,可以起到优异的抗磨减摩效应.  相似文献   

5.
利用MG-200型摩擦磨损试验机研究了炭纤维增强环氧树脂复合材料/N80钢的摩擦学性能,考察了介质温度对摩擦学性能的影响;用扫描电子显微镜分析了磨损表面形貌.结果表明:在干摩擦条件下,炭纤维增强环氧树脂复合材料与N80钢对摩时的摩擦系数较低,炭纤维增强环氧树脂复合材料的磨损主要表现为树脂基体脱落碳化和炭纤维的折断剥落,偶件钢环则呈现明显的磨粒磨损特征;在油井产出液润滑下炭纤维增强环氧树脂复合材料的磨损率较低,摩擦系数和磨损率随着润滑介质温度的升高而增大,偶件钢环则呈现明显的磨粒磨损和腐蚀磨损特征.  相似文献   

6.
Al65Cu20Cr15准晶颗粒/Al基复合材料的摩擦学性能   总被引:8,自引:7,他引:8  
齐育红  董闯 《摩擦学学报》1998,18(2):129-135
首次研究了Al65Cu20Cr15准晶颗粒/Al基复合材料的硬度及摩擦学性能。研究表明,该复合材料的硬度随准晶颗粒体积分数的增加而增加,最大达到1200MPa,最纯铝的4倍。复合材料的摩擦学性能优于纯铝,当准晶颗粒体积分数为15% ̄20%,摩擦学性能随体积分数的升高而改善,当体积分数达到25%时,摩擦学性能有所降低。  相似文献   

7.
利用等离子喷涂工艺制备了含氧化物(MoO3-ZnO)的镍基复合涂层,通过UMT-3球盘式高温摩擦试验机评价了复合涂层在室温、400和800 ℃下的摩擦学性能,并采用扫描电镜(SEM)、能谱分析仪(EDS)、X射线衍射仪(XRD)以及拉曼光谱仪(Raman)等分析手段研究了涂层微观组织、物相组成以及磨损机理. 结果表明:在室温和400 ℃,复合涂层的摩擦系数和磨损率均高于Ni-5%Al金属基底,且随着氧化物含量的增加,润滑和耐磨性能均被削弱,主要表现为磨粒磨损和黏着磨损. 在800 ℃,MoO3和ZnO的添加可以有效改善复合涂层的摩擦性能,随着其含量的增加,摩擦系数变化不明显,而磨损率逐渐增加. 特别是添加5%MoO3和5%ZnO的复合涂层在800 ℃摩擦系数低至0.28,磨损率低至4.22×10?5 mm3/(N·m),其良好的高温润滑耐磨性能得益于摩擦表面二元氧化物(NiO、MoO3和ZnO)和三元氧化物(ZnMoO4和NiMoO4)的协同作用.   相似文献   

8.
高碱值复合磺酸钙-钛基脂的制备及其摩擦学性能研究   总被引:1,自引:0,他引:1  
本文将高碱值磺酸钙与复合钛基润滑脂融合,制备出一种新的复合磺酸钙-钛基润滑脂,并对其理化性能、摩擦学性能及机理进行了研究分析.结果表明:新的复合磺酸钙-钛基润滑脂在摩擦表面生成了含有二氧化钛的摩擦保护膜,有效降低了摩擦系数并在常温条件下表现出优异的润滑性能.同时高温下摩擦表面生成了更多的含硫酸盐成分,而生成的二氧化钛含量相对减少,高温条件下呈现减摩性能优异,但抗磨损性能降低的特点.  相似文献   

9.
研究了铜包石墨和铜/石墨混合填充PTFE基复合材料的微观结构、力学性能及摩擦学特性.结果表明,铜包石墨填充PTFE复合材料的抗压缩性能、抗拉伸性能以及耐磨性能均优于铜/石墨混合填充PTFE复合材料,其原因在于铜包石墨既增强了填料与PTFE的界面结合强度,又保证了PTFE连续相的完整性.此外,石墨表面铜包敷层的结构疏松、晶粒细小,有利于提高转移膜的结合强度并减轻摩擦过程中对偶材料的损伤  相似文献   

10.
铜包石墨填充PTFE基复合材料摩擦学特性的研究   总被引:10,自引:6,他引:4  
研究了铜包石墨和铜/石墨混合填充PTFE基复合材料的微观结构、力学性能及摩擦学特性。结果表明,铜包石墨填充PTFE复合材料的抗压缩性能、抗拉伸性能以及耐磨性能均伏于铜/石墨混合填充PTFE复合材料,其原因在于铜包石墨既增强了填料与PTFE的界面结合强度,又保证了PTFE连续相的完整性。此外,石墨表面铜包敷层的结构疏松、晶粒细小,有利于提高转称膜的结合强度并减轻摩擦过程中对偶材料的损伤。  相似文献   

11.
采用粉末冶金工艺制备了锡青铜网增强的锡青铜基自润滑复合材料,考察了锡青铜网对复合材料机械性能和摩擦学性能的影响.研究表明:锡青铜网对研制材料的增强作用主要是由于锡青铜网与基体界面相容性良好,热膨胀系数相近,界面结合强度高,从而减少了增强体与基体之间的裂纹或空隙,且网状金属丝间的筋结与支撑提高了材料的断裂能所致;加入一定量的金属网片提高了材料的耐磨性,但金属网片含量过高会导致转移膜的破坏,从而增大摩擦系数,降低复合材料的强度和耐磨性能.  相似文献   

12.
碳化硼颗粒增强二硅化钼复合材料的摩擦学性能   总被引:2,自引:1,他引:2  
采用快速热压烧结法制备了 B4 C颗粒增强 Mo Si2 基复合材料 ,研究了填料含量对材料的微观结构、力学性能以及摩擦学性能的影响 .结果表明 ,随 B4 C含量的增加 ,复合材料的硬度增大 ,摩擦系数及磨损率降低 .其原因在于 B4 C抑制 Mo Si2 的氧化、减少颗粒间玻璃相的生成 ,从而提高了颗粒间的界面结合强度 .此外 ,摩擦过程中生成的摩擦化学产物也有助于提高材料的摩擦学性能  相似文献   

13.
利用多靶磁控溅射法制备MoS_2基系列复合薄膜,通过扫描电子显微镜、X-ray衍射、拉曼光谱对薄膜微观形貌及晶体结构进行表征,利用纳米压入表征薄膜硬度及弹性模量,通过微动摩擦磨损试验对比分析了该系列薄膜在大气环境下的润滑性能.研究结果表明:MoS_2薄膜中复合C、Ti元素可有效抑制薄膜生长过程中柱状结构的形成,薄膜更为致密;复合薄膜的摩擦系数及磨损率显著降低.其中,MoS_2+C+Ti三元复合薄膜硬度为7.43 GPa,其弹性模量及弹性恢复量分别为98.1 GPa和61.7%.在大气环境(RH 35%~50%)下,法向载荷10 N时MoS_2+C+Ti薄膜具有最低的磨损率4.67×10–17 m~3/(N·m),该薄膜在不同载荷的微动摩擦试验中均具有最好的承载力.  相似文献   

14.
在栓-盘摩擦磨损试验机上考察了干摩擦条件下偶件表面粗糙度对碳纤维增强尼龙(PA1010)复合材料摩擦学性能的影响,采用不迩显微镜观察分析了偶件表面转移膜的形貌。结果表明,碳纤维能够明显提高PA1010的耐磨性能,当碳纤维增强相的质量分数为10%和20%时,增强PA1010复合材料的磨损率比非增强PA1010的降低3~6倍。这是由于碳纤维起到了承载作用并具有较强的抗犁削能力所致,磨损表面形貌光学显微分析表明:磨损前后偶件表面形貌发生了明显的变化;当偶件表面粗糙度Ra处于0.11~0.13um范围内时,复合材料的摩损率最低;随Ra值的增大或减小微切削和转移膜疲劳脱落加剧致使复合材料的磨损率快速增大。  相似文献   

15.
利用激光熔覆原位合成技术在纯钛表面制备了Ti3Al金属间化合物涂层.用X射线衍射仪、扫描电镜和高分辨透射电镜分析了涂层的组成和组织结构.在UMT-2MT摩擦磨损试验机上对Ti3Al金属间化合物涂层在不同载荷和不同滑动速度下的摩擦磨损性能进行了测试.结果表明:Ti3Al金属间化合物涂层的主要组成物相为Ti3Al,涂层与基材冶金结合,涂层显微组织结构主要为树枝状晶,涂层的平均显微硬度约为HV0.2530,涂层的摩擦系数随载荷和滑动速度的增加而减小,磨损体积随载荷和滑动速度的增加而增加.Ti3Al金属间化合物涂层相对于钛基材耐磨性能显著提高.  相似文献   

16.
Ti对镍基高温自润滑复合材料力学和摩擦学性能的影响   总被引:1,自引:0,他引:1  
本文中采用热压烧结技术制备了镍基高温自润滑复合材料,研究了镍基合金基体中添加少量Ti对复合材料力学与高温摩擦学性能的影响.研究结果显示:两者的摩擦系数整体较低,添加少量Ti后,复合材料的硬度提高,室温弯曲强度明显降低,室温压缩强度基本不变,摩擦系数总体上略有降低,抗磨性能提高.摩擦机理方面,两者基本相同.  相似文献   

17.
通过真空热压烧结方法制备Ni/Ti2AlC复合材料,并对材料进行热处理,考察了两种不同热处理工艺对复合材料的显微组织和室温及800 ℃下摩擦学性能的影响. 结果表明:烧结后,Ni/10%Ti2AlC复合材料包含Ni基固溶体、TiCx、Ni3Al和少量Al2O3,而Ni/50%Ti2AlC主要由Ni2TiAl、TiCx、Ti3NiAl2C和少量Al2O3组成. 分别于1 200和1 350 ℃热处理16 h后,Ni/10%Ti2AlC中的Ni3Al相和Ni/50%Ti2AlC中的Ti3NiAl2C相消失. 热处理导致TiCx相的生长,复合材料显微组织得到优化,同时材料保持了高度致密性. 热处理后,两种复合材料的维氏硬度下降,这主要归结于Ni3Al强化相的消失和碳化物的长大. 随着热处理温度的升高,室温下复合材料的磨损率降低,这主要归结于热处理优化了显微组织,提高了两相结合强度,进而抑制了TiCx颗粒的脱出,减少了磨粒磨损的发生;800 ℃摩擦条件下,热处理前后,复合材料均表现出较低的摩擦系数和磨损率,这主要归结于高温下磨损表面形成的由TiO2、NiO和NiTiO3组成的润滑膜所起到的减摩抗磨作用,此外,热处理使得显微组织更均匀,更有利于磨损表面TiO2和NiTiO3润滑相的形成,对摩擦学性能有利.   相似文献   

18.
本文中采用简单的液相化学反应和水热还原过程,成功制备了还原氧化石墨烯纳米片和氟化镧复合材料(rGO/LaF3). 通过SRV-1微动摩擦试验机测试了系列样品作为水润滑添加剂时的摩擦学性能. 结果显示:当rGO和LaF3的比值为2∶1时,具有最低摩擦系数0.335;当比值为1∶1时,磨损体积最小;相比纯水,添加rGO/LaF3复合材料(质量分数0.1%)后表现出了一定的减摩和抗磨作用,其中抗磨效果比较明显.   相似文献   

19.
借助单源前驱体热分解在聚酰胺酰亚胺(PAI)涂层中原位合成了硫化银(Ag2S)纳米粒子,并通过调节单源前驱体的含量进一步调控纳米粒子尺寸. 采用X射线衍射仪和高分辨场发射扫描电镜对原位合成Ag2S纳米粒子的物相结构、形貌、尺寸和尺寸分布进行了表征和分析;详细研究了Ag2S纳米粒子对PAI涂层机械性能和摩擦学性能的影响;对其增强机制进行了探讨. 结果表明:PAI涂层中原位合成的Ag2S纳米粒子粒径较小而且分散均匀,且调节单源前驱体能有效调控Ag2S纳米粒子的尺寸和尺寸分布. Ag2S纳米粒子的原位引入(优化质量分数为5.0%)有效改善了PAI涂层的机械性能和摩擦学性能,其摩擦学性能的增强归因于机械强度的提高和诱导转移膜的形成.   相似文献   

20.
采用闭合场非平衡磁控溅射技术分别制备了纯MoS2薄膜以及MoS2-Ti和MoS2-Ti-TiB2复合薄膜,利用真空高温摩擦试验机对比考察三种薄膜在真空环境中25~300℃下的摩擦学性能,通过拉曼光谱(Raman)、X射线衍射(XRD)和透射电镜(TEM)等分析复合元素对薄膜结构的影响以及摩擦前后薄膜结构的变化,探讨摩擦磨损机理.结果表明:纯MoS2薄膜以(002)和(100)晶面取向生长,结构疏松,硬度低,在真空不同温度下摩擦寿命很短;Ti和TiB2复合后,薄膜呈现致密的非晶结构,硬度升高;MoS2-Ti薄膜在低温下(25和100℃)下具有优异的摩擦学性能,当温度达到200℃以上时,摩擦寿命急剧降低;MoS2-Ti-TiB2复合薄膜在25~300℃全温度范围内都保持低的摩擦系数和磨损率,这与其致密的非晶结构、摩擦界面MoS2 (002)晶面有序化以及高硬度耐高温TiB<...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号