首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 367 毫秒
1.
研究了各向异性非均匀海森堡周期性XY链中的量子失协(QD)和形成纠缠(EOF)。量子失协一般大于形成纠缠。两者之间的差距随着温度的升高或外磁场的增大而减小。调节各向异性系数的大小,可以发现,有些情况下形成纠缠已经消失,而量子失协仍然存在。在大部分参数区域内,量子失协总是大于形成纠缠。  相似文献   

2.
Entanglement dynamics of an open two-qubit anisotropic XY Heisenberg system is investigated in the presence of an inhomogeneous magnetic field and spin-orbit interaction. We suppose that each qubit interacts with a separate thermal reservoir which is held in its own temperature. The asymptotical and the dynamical behavior of entanglement are analyzed. To distinguish between entanglement induced by the environment and entanglement due to the presence of inter-qubit interaction, the effects of spin-orbit parameter D and temperature difference parameter ΔT on the entanglement of the system have been investigated. We show that for a fixed set of the system parameters, entanglement can be produced just by adjusting the temperature difference between the reservoirs. The size of this entanglement, which is induced by temperature difference of reservoirs, increases as the spin-orbit parameter D increases. Also we find that, this environment induced entanglement can be improved if the qubit influenced by the weaker magnetic field is in contact with the hotter reservoir, i.e. indirect geometry of connection. In this case, the amount of asymptotic entanglement increases as D increases. Regardless of the geometry of connection, increasing D causes the appearance of entanglement in the larger regions of TM-ΔT plane, therefore entanglement can exist in higher temperatures and temperature differences. Furthermore, increasing D enhances the amount of entanglement in these regions. We also show that the state of the system can be found in the maximally entangled state for the case of zero temperature reservoirs and large amount of the spin-orbit parameter.  相似文献   

3.
We investigate the pairwise thermal quantum discord in a three-qubit XXZ model with Dzyaloshinskii-Moriya (DM) interaction. We find that the effects of DM interaction on antiferromagnetic system is distinct from that of ferromagnetic system. The magnetic field supplemented with DM term contribute to enhance the range of quantum discord. It is revealed that the situations where quantum discord fails to indicate a sudden change of groundstate at finite temperature though indicating such a sudden change of groundstate at zero temperature. Dynamics of pairwise thermal quantum discord is considered as well. Thermal quantum discord vanishes in asymptotic limit regardless of its initial values, however, thermal entanglement suddenly disappears in finite time.  相似文献   

4.
We investigate the pairwise thermal quantum discord in a three-qubit XXZ model with Dzyaloshinskii-Moriya (DM) interaction. We find that the effects of DM interaction on antiferromagnetic system is distinct from that of ferromagnetic system. The magnetic field supplemented with DM term contribute to enhance the range of quantum discord. It is revealed that the situations where quantum discord fails to indicate a sudden change of groundstate at finite temperature though indicating such a sudden change of groundstate at zero temperature. Dynamics of pairwise thermal quantum discord is considered as well. Thermal quantum discord vanishes in asymptotic limit regardless of its initial values, however, thermal entanglement suddenly disappears in finite time.  相似文献   

5.
Energy is introduced as an entanglement witness to describe the entanglement property of a quantum system. The thermal equilibrium system is guaranteed to be entangled when system is cooled down below the entanglement temperature TE. By virtue of this concept we exploit the minimum separable state energy and entanglement temperature TE of the bilinear-biquadratic antiferromagnetic spin-1 chain model. We numerically calculate TE for arbitrary values of the strength of biquadratic exchange interaction Q up to N=7. We find TE decreases with Q for fixed N when Q is between -3 and 1/3 (J = 1). In this regime TE also decreases with N for fixed Q and varies slowly for large N. While the thermal system is always entangled when Q is smaller than -3.  相似文献   

6.
Energy is introduced as an entanglement witness to describe the entanglement property of a quantum system. The thermal equilibrium system is guaranteed to be entangled when system is cooled down below the entanglement temperature TE. By virtue of this concept we exploit the minimum separable state energy and entanglement temperature TE of the bilinear-biquadratic antiferromagnetic spin-1 chain model. We numerically calculate TE for arbitrary values of the strength of biquadratic exchange interaction Q up to N = 7. We find TE decreases with Q for fixed N when Q is between -3 and 1/3 (J = 1). In this regime TE also decreases with N for fixed Q and varies slowly for large N. While the thermal system is always entangled when Q is smaller than -3.  相似文献   

7.
In this paper, we investigate the thermal entanglement of two-spin subsystems in an ensemble of coupled spin-half and spin-one triangular cells, (1/2, 1/2, 1/2), (1/2, 1, 1/2), (1, 1/2, 1) and (1, 1, 1) with the XXZ anisotropic Heisenberg model subjected to an external homogeneous magnetic field. We adopt the generalized concurrence as the measure of entanglement which is a good indicator of the thermal entanglement and the critical points in the mixed higher dimensional spin systems. We observe that in the near vicinity of the absolute zero, the concurrence measure is symmetric with respect to zero magnetic field and changes abruptly from a non-null to null value for a critical magnetic field that can be signature of a quantum phase transition at finite temperature. The analysis of concurrence versus temperature shows that there exists a critical temperature, that depends on the type of the interaction, i.e. ferromagnetic or antiferromagnetic, the anisotropy parameter and the strength of the magnetic field. Results show that the pairwise thermal entanglement depends on the third spin which affects the maximum value of the concurrence at absolute zero and at quantum critical points.  相似文献   

8.
The thermal entanglement in a two-spin-qutrit system with two spins coupled by exchange interaction is investigated in terms of the measure of entanglement called ‘negativity’. We strictly show that for any temperature the entanglement is symmetric with respect to zero magnetic field. The behavior of negativity is presented for four different cases. We find that the entanglement may be enhanced under a nonuniform magnetic field. Because there is not any necessary and sufficient condition for quantum separability in systems of dimension 3⊗3, our results are qualitative, not quantitative.  相似文献   

9.
郑一丹  毛竹  周斌 《物理学报》2017,66(23):230304-230304
研究了具有三角自旋环的伊辛-海森伯链在磁场作用下的热纠缠性质.分别讨论了三角自旋环中自旋1/2粒子间相互作用的三种情形,即XXX,XXZ和XY Z海森伯模型.利用转移矩阵方法,数值计算了具有三角自旋环的伊辛-海森伯链的配对纠缠度.计算结果表明,外加磁场强度和温度对系统处于上述三种海森伯模型的热纠缠性质均有重要影响.给出了系统在不同的海森伯模型下,纠缠消失对应的临界温度随磁场强度的变化图,由此可以得到系统存在配对纠缠的参数区域,同时发现在特定的参数区域存在纠缠恢复现象.因此适当调节温度和磁场强度,可以有效调控具有三角自旋环的伊辛-海森伯链热纠缠性质.  相似文献   

10.
研究了非匀强磁场中各向异性Heisenberg XY链的基态纠缠和热纠缠.结果表明对双量子位情形,纠缠与格点间耦合常数J、外部磁场B、各向异性参数γ和b的正负无关.对绝对零度情形,我们给出了纠缠C的解析表达式,并指出临界磁场Bc随磁场各向异性参数b的增大而增大.对有限温度情形,我们给出了γ=0时C的解析表达式和γ≠0时的数值模拟结果,结果发现引进非匀强磁场可以使纠缠在某些区域明显增大;同时我们还指出当γ=0时,纠缠存在的临界温度Tc仅是b的增函数,而当γ≠0时,它却由B和b共同决定.  相似文献   

11.
In this study, we investigate entanglement in a two mixed-spin (1/2,1) XY Heisenberg spin system under an applied magnetic field by considering the long-range interaction with an inverse-square function. The spin-spin coupling constant is considered as a function of the distance between spins. We also discuss the temperature and magnetic field dependence of the thermal entanglement in this system for this interaction. The numerical results show that, in the presence of the long-range interaction, thermal entanglement between spins has a rich behavior dependent upon the interaction strength, temperature and magnetic field. We find that for less than a critical distance there are entanglement plateaus dependent upon the distance between spins, whereas above the critical distance the entanglement can exhibit sudden death.  相似文献   

12.
We numerically investigate the thermal entanglements of spins (1/2, 1) and spins (1/2, 1/2) in the three-mixed (1/2, 1, 1/2) anisotropic Heisenberg XXZ spin system on a simple triangular cell under an inhomogeneous magnetic field. We show that the external magnetic field induces strong plateau formation in the pairwise thermal entanglement for fixed parame-ters of the Hamiltonian in the cases of ferromagnetic and antiferromagnetic interactions. We also .observe an unexpected critical point at finite temperature in the thermal entanglement of spins (1/2, 1) for the antiferromagnetic case, while the entanglement of spins (1/2, 1) in the ferromagnetic case and the entanglement of spins (1/2, 1/2) in both ferromagnetic and antiferromagnetic cases almost decay exponentially to zero with increasing temperature. The critical point in the en-tanglement of spins (1/2, 1) in the antiferromagnetic case may be a signature of the quantum phase transition at finite temperature.  相似文献   

13.
We investigate the transient spontaneous quantum synchronization between two qubits interacting with a common non-Markovian environment based on a collision model. We are mainly interested in the effect of non-Markovianity on the synchronization between two qubits. We find that the non-Markovianity always delay the anti-synchronization and decrease the parameter region where the qubits get anti-synchronized. Meanwhile, we define V to characterize the visibility of synchronization and show that there is an apparent link among V, entanglement and quantum mutual information whether in the Markovian or non-Markovian regimes when the environment is in the vacuum state. Moreover, with the increase of temperature, the parameter region of the emergence of anti-synchronization and the time to get anti-synchronized in the non-Markovian regime gradually approaches that in the Markovian regime. The high temperature decreases the parameter region of the emergence of anti-synchronization in both Markovian and non-Markovian regimes, and breaks the connection among V, entanglement and quantum mutual information.  相似文献   

14.
Ground state entanglement and thermal entanglement of a two-qubit Heisenberg XXZ chain in the presence of the different Dzyaloshinski-Moriya interaction and inhomogeneous magnetic field are investigated.By the concept of concurrence, we find that the inhomogeneity of the magnetic field may make entanglement last for a long time and the critical temperature is dependent on Jz and b. The entanglement can be increased by increasing the temperature in some cases. We also find that the x-component parameter Dx has a higher critical temperature and more entanglement for a certain condition than the z-component parameter Dz.  相似文献   

15.
Quantum correlation dynamics between two identical and spatially separated atoms in free space is investigated by the use of concurrence C and quantum discord (QD). The behaviors of QD differs in many unexpected ways from the entanglement in this system. Firstly, it shows the situations which the concurrence and QD can behave very differently with a “sudden birth” phenomenon of the former but not of the latter, and QD is only oscillating decays with time and the interqubit distance. We also verify the cases which QD is always greater than the concurrence and the region where the concurrence is vanished but with nonzero values for QD. Meanwhile an unexpected situation which the concurrence is greater than QD under the initial state |eg〉 is analyzed. It is revealed that the quantum correlation based only on QD is expected to be more robust than entanglement which is not suitable for all the initial states under the decoherence environment. Then, by introducing the incoherent pumping, we also study the different properties of the steady-state entanglement and QD about this atomic subsystem. It is shown that the incoherent pumping can overcome the decay of the atoms and the influences about the interqubit distance r 12/λ on the steady-state correlation can make the decay of the concurrence obviously quicker than QD, the life of the steady-state QD is evidently larger than the steady-state entanglement.  相似文献   

16.
陈士荣  夏云杰  满忠晓 《中国物理 B》2010,19(5):50304-050304
In this paper,we study the quantum phase transition and the effect of impurity on the thermal entanglement between any two lattices in three-qubit Heisenberg XX chain in a uniform magnetic field.We show that the quantum phase transition always appears when impurity parameter is an arbitrary constant and unequal to zero,the external magnetic field and impurity parameters have a great effect on it.Also,there exists a relation between the quantum phase transition and the entanglement.By modulating the temperature,magnetic field and the impurity parameters,the entanglement between any two lattices can exhibit platform-like behaviour,which can be used to realize entanglement switch.  相似文献   

17.
By using the concept of negativity, we investigate the thermal entanglement of a two-spin (1/2, 3/2) mixed-spin Heisenberg XX chain with an inhomogeneous external magnetic field. We obtain the analytical results of entanglement of this model. For the case of uniform magnetic field, we find that the critical temperature is higher than the results of the spin-1/2 chain and (1/2,1) mixed-spin chain. And by adjusting the nonuniform parameter b, one is able to obtain more entanglement at a higher temperature.  相似文献   

18.
我们研究了二维.J1-J2模型中三种四量子比特的热纠缠特性,结果发现,临界温度基本上随挫变参量α的增大而减小.我们也发现,通过选择合适的挫变参量α可以制备最大纠缠态.  相似文献   

19.
This paper investigates the quantum discord and entanglement of two atoms when they simultaneously interact with a single-mode thermal field. The results show that, the two atoms which are initially in separate states can be entangled by a thermal field. However, with increase of the mean photon number, the value of the entanglement decreases and disappears when the temperature of the cavity is high enough (corresponding to the large value of the mean photon number). In stark contrast, the quantum discord does not decrease, but gradually reaches stable value at high temperature. In addition, when the two atoms are initially the Werner mixed state, we have found that, a large amount of quantum discord is exist even in the region where the entanglement is zero, which is a strong signature for the presence of non classical correlations. These results indicate that, the quantum discord is more resistant to the environment’s disturbance than the entanglement for higher temperatures.  相似文献   

20.
Preventing quantum entanglement from decoherence effect is of theoretical and practical importance in the quantum information processing technologies.In this regard,we consider the entanglement dynamics of two identical qubits where the qubits which are coupled to two independent(Markovian and/or non-Markovian) as well as a common reservoir at zero temperature are further interacted with a classical driving laser field.Then,we study the preservation of generated two-qubit entanglement in various situations using the concurrence measure.It is shown that by applying the classical driving field and so the possibility of controlling the Rabi frequency,the amount of entanglement of the two-qubit system is improved in the off-resonance condition between the qubit and the central cavity frequencies(central detuning) in both non-Markovian and Markovian reservoirs.While the central detuning has a constructive role,the detuning between the qubit and the classical field(laser detuning) affects negatively on the entanglement protection.The obtained results show that long-living entanglement in the non-Markovian reservoir is more accessible than in the Markovian reservoir.We demonstrate that,in a common reservoir non-zero stationary entanglement is achievable whenever the two-qubit system is coupled to the reservoir with appropriate values of relative coupling strengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号