首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using the method of matrix diagonalization, we investigate an off-center D^- in a spherical quantum dot (QD) subjected to a parabolic potential confinement. We discuss the effect of the position of an impurity in the QD on the binding energy of the D system, Eurthermore, we compare a negatively charged donor D^- with a neutral donor DO confined by a spherical QD with a parabolic potentiM. The results have clearly demonstrate the so-called quantum size effect. The binding energy is dependent on the confining potential hw0 and the impurity ion distance D.  相似文献   

2.
纤锌矿GaN柱形量子点中类氢施主杂质态   总被引:1,自引:3,他引:1       下载免费PDF全文
在有效质量近似和变分原理的基础上,选取含两个变分参数的波函数,研究了纤锌矿结构的GaN/AlxGa1-xN单量子点中类氢施主杂质体系的结合能随量子点(QD)尺寸以及杂质在量子点中位置的变化,并与以前使用不同尝试波函数的计算结果进行了比较。结果表明:由我们选取的两变分参数波函数得到的结果与前人选取的两变分参数波函数得到的结果相比有所改进,而与选取一个变分参数波函数得到的结果一致。同时我们还计算了体系的维里定理值随量子点半径的变化情况,所得结果与前人工作结果一致,说明本文选取的两变分参数波函数能很好地描述柱形量子点中施主杂质态的运动。  相似文献   

3.
考虑应变,在有效质量、有限高势垒近似下,变分研究了纤锌矿GaN/AlxGa1-xN柱形量子点中类氢施主杂质态结合能随流体静压力、杂质位置及量子点结构参数(量子点高度、半径、Al含量)的变化关系.结果表明,类氢施主杂质态结合能随流体静压力增大而增大,且在量子点尺寸较小时,流体静压力对杂质态结合能的影响更为显著.受流体静压力的影响,杂质态结合能随量子点高度、半径的增加而单调减少,且变化趋势加剧;随Al含量增加而增大的趋势变缓.无论是否施加流体静压力,随着类氢施主杂质从量子点左界面沿材料生长方向移至右界面,杂质态结合能在量子点的右半部分存在一极大值.流体静压力使得极大值点向量子点中心偏移.  相似文献   

4.
The properties of the low-lying states of a negative donor center trapped by a spherical quantum dot, which is subjected to a parabolic potential confinement, are investigated in the absence of magnetic field. The calculations have been performed by means of the exact diagonalization of the Hamiltonian matrix within the effective-mass approximation. We find that there is only one bound state the D- center in a spherical parabolic quantum dot in the absence of magnetic field. The binding energy of the ground state is obtained as a function of the dot size. Moreover, the critical confined potential radius value at which the negative donor center changes from unbound to bound is obtained.  相似文献   

5.
The low-lying spectra of parabolic quantum dots with or without an impurity at the center are investigated.While it has been known that the electron-electron interaction leads to ground-state transitions on magic values of angular momentum in a magnetic field.We show,in this paper,that the implantation of an impurity ion at the center can either enhance or suppress such transitions,depending on whether it is an acceptor or a donor ion.  相似文献   

6.
氮化物抛物量子阱中类氢杂质态能量   总被引:6,自引:1,他引:5  
采用变分方法研究氮化物抛物量子阱(GaN/AlxGa1-xN)材料中类氢杂质态的能级,给出基态能量、第一激发态能量、结合能和跃迁能量等物理量随抛物量子阱宽度变化的函数关系.研究结果表明,基态能量、第一激发态能量、基态结合能和1s→2p±跃迁能量随着阱宽L的增大而减小,最后接近于GaN中3D值.GaN/Al0.3Ga0.7N抛物量子阱对杂质态的束缚程度比GaAs/Al0.3Ga0.7As抛物量子阱强,因此,在GaN/Al0.3-Ga0.7N抛物量子阱中束缚于杂质中心处的电子比在GaAs/Al0.3Ga0.7As抛物量子阱中束缚于杂质中心处的电子稳定.  相似文献   

7.
在精确对角化方法得到的系统哈密顿方程的能量和波函数的基础上,我们利用密度矩阵方法计算了抛物类氢杂质量子点中激子的基态(L=0态)跃迁到第一激发态(L=-1态)的光吸收系数.  相似文献   

8.
The linear and nonlinear optical properties of a hydrogenic donor in a disc-like parabolic quantum dot in the presence of an external magnetic field are studied. The calculations were performed within the effective mass approximation, using the matrix diagonalization method and the compact density-matrix approach. The linear and nonlinear optical absorption coefficients between the ground (L =0) and the first excited state (L = 1) have been examined based on the computed energies and wave functions. We find that the linear, nonlinear third-order, and total optical absorption coefficients are strongly affected by the confinement strength of QDs, the external magnetic field, and the incident optical intensity.  相似文献   

9.
The shallow hydrogenic donor impurity states in square, V-shaped, and parabolic quantum wells are studied in the framework of effective-mass envelope-function theory using the plane wave basis. The first four impurity energy levels and binding energy of the ground state are more easily calculated than with the variation method. The calculation results indicate that impurity energy levels decrease withthe increase of the well width and decrease quickly when the well width is small.The binding energy of the ground state increases until it reaches a maximum value,and then decreases as the well width increases. The results are meaningful andcan be widely applied in the design of various optoelectronic devices.  相似文献   

10.
Binding energies of a hydrogenic donor in a spherical GaAs quantum dot surrounded by Ga1-xA4xAs matrix are calculated. The results are presented for realistie barrier heights corresponding to different values of x (x 〈 0.4). The calculations are performed under two different conditions: (i) a spherical dot with square well confinement and (ii) a dot with parabolic potential well confinement. The results show that (i) the donor ionization energies are always higher under parabolic confinement as compared to a dot of the same radius under square well confinement and (ii) the oscillator strengths coupling ground state with excited states are two orders larger under parabolic confinement. Our results are in agreement with the results of other researchers.  相似文献   

11.
Using the configuration-integration methods (CI) [Phys. Rev. B 45 (1992) 19], we report the results of the Hydrogenie-impurity ground state in a GaAs/AIAs spherical quantum dot under an electric field. We discuss the variations of the binding energies of the Hydrogenic-impurity ground state as a function of the position of impurity D, the radius R of the quantum dot, and also as a function of electric field F. We find that the ground energy and binding energy of impurity placed anywhere depend strongly on the position of impurity. Also, electric field can largely change the Hydrogenic-impurity ground state only limiting to the big radius of quantum dot. And the differences in energy level and binding energy are observed from the center donor and off-center donor.  相似文献   

12.
Using the configuration-integration methods {(CI)} [Phys. Rev.B 45 (1992) 19], we report the results of the Hydrogenic-impurity ground state in a GaAs/AlAs spherical quantum dot under an electric field. We discuss the variations of the binding energies of the Hydrogenic-impurity groundstate as a function of the position of impurity D, the radius R of the quantum dot, and also as a function of electric field F. We find that the ground energy and binding energy of impurity placed anywhere depend strongly on the position of impurity. Also, electric field can largely change theHydrogenic-impurity ground state only limiting to the big radius of quantum dot. And the differences in energy level and binding energyare observed from the center donor and off-center donor.  相似文献   

13.
The ground state binding energy and the average interparticle distances for a hydrogenic impurity in double quantum dots with Gaussian confinement potential are studied by the variational method. The probability density of the electron is calculated, too. The dependence of the binding energy on the impurity position is investigated for GaAs quantum dots. The result shows that the binding energy has a minimum as a function of the distance between the two quantum dots when the impurity is located at the center of one quantum dot or at the center of the edge of one quantum dot. When the impurity is located at the center of the two dots, the binding energy decreases monotonically.  相似文献   

14.
Kondo transport properties through a Kondo-type quantum dot (QD) with a side-coupled triple-QD structure are systematically investigated by using the non-equilibrium Green's function method. We firstly derive the formulae of the current, the linear conductance, the transmission coefficient, and the local density of states. Then we carry out the analytical and numerical studies and some universal conductance properties are obtained. It is shown that the number of the conductance valleys is intrinsically determined by the side-coupled QDs and at most equal to the number of the QDs included in theside-coupled structure in the asymmetric limit. In the process of forming the conductance valleys, the side-coupled QD system plays the dominant role while the couplings between the Kondo-type QD and the side-coupled structure play the subsidiary and indispensable roles. To testify the validity of the universal conductance properties, another different kinds of side-coupled triple-QD structures are considered. It should be emphasized that these universal properties are applicable in understanding this kind of systems with arbitrary many-QD side structures.  相似文献   

15.
Simultaneous effects of an on-center hydrogenic impurity and band edge non-parabolicity on intersubband optical absorption coefficients and refractive index changes of a typical GaAs/Al x Ga 1 x As spherical quantum dot are theoretically investigated,using the Luttinger-Kohn effective mass equation.So,electronic structure and optical properties of the system are studied by means of the matrix diagonalization technique and compact density matrix approach,respectively.Finally,effects of an impurity,band edge non-parabolicity,incident light intensity and the dot size on the linear,the third-order nonlinear and the total optical absorption coefficients and refractive index changes are investigated.Our results indicate that,the magnitudes of these optical quantities increase and their peaks shift to higher energies as the influences of the impurity and the band edge non-parabolicity are considered.Moreover,incident light intensity and the dot size have considerable effects on the optical absorption coefficients and refractive index changes.  相似文献   

16.
In this paper, we calculate the low-lying spectra of a single-electron magnetic quantum ring with an offcenter Coulomb impurity, where the magnetic field is zero within the ring and constant elsewhere. The impurity, either an acceptor or a donor, is located at a distance d as measured from the plane of the ring along the vertical z direction.The magnetic moments are found in order to get visible discontinuities at the points of the ground-state orbital angular momentum L transitions induced by magnetic fields.  相似文献   

17.
The confined longitudinal-optical (LO) phonon and surface-optical (SO) phonon modes of a free-standing annular cylindrical quantum dot are derived within the framework of dielectric continuum approximation. It is found that there exist two types of SO phonon modes: top SO (TSO) mode and side SO(SSO) mode in a cylindrical quantum annulus. Numerical calculation on CdS annulus system has been performed. Results reveal that the two different solutions of SSO mode distribute mainly at the inner or outer surfaces of the annulus. The dispersion relations and the coupling intensions of phonons in a quantum annulus are compared with those in a cylindrical quantum dot. It is found that the dispersion relations of the two different structures are similar, but the coupling intension of the phonon-electron interaction in quantum annulus is larger than that in quantum dot. The Hamiltonians describing the free phonon modes and their interactions with electrons in the system are also derived.  相似文献   

18.
Studying quantum properties in solid-state systems is a significant avenue for research. In this scenario, double quantum dots appear as a versatile platform for technological breakthroughs in quantum computation and nanotechnology. This work inspects the thermal entanglement and quantum coherence in two-coupled DODs, where the system is exposed to an external stimulus that induces an electronic transition within each subsystem. The results show that the introduction of external stimulus induces a quantum level crossing that relies upon the Coulomb potential changing the degree of quantum entanglement and coherence of the system. Thus, the quantum properties of the system can be tuned by changing the transition frequency, leading to the enhancement of its quantum properties.  相似文献   

19.
Two interacting electrons in a harmonic oscillator potential under the influence of a perpendicular homo-geneous magnetic field are considered. The energies of two-electron quantum dots with the electron-LO-phonon couplingas a function of magnetic field are calculated. Calculations are made by using the method of few-body physics withinthe effective-mass approximation. Our results show that the electron-LO-phonon coupling effect is very important insemiconductor quantum dots.  相似文献   

20.
Simultaneous effects of conduction band non-parabolicity and hydrostatic pressure on the binding energies of 1S, 2S, and 2P states along with diamagnetic susceptibility of an on-center hydrogenic impurity confined in typical GaAs/AlxGa1-xAs spherical quantum dots are theoretically investigated using the matrix diagonalization method. In this regard, the effect of band non-parabolicity has been performed using the Luttinger-Kohn effective mass equation. The binding energies and the diamagnetic susceptibility of the hydrogenic impurity are computed as a function of the dot radius and different values of the pressure in the presence of conduction band non-parabolicity effect. The results we arrived at are as follows: the incorporation of the band edge non-parabolicity increases the binding energies and decreases the absolute value of the diamagnetic susceptibility for a given pressure and radius; the binding energies increase and the magnitude of the diamagnetic susceptibility reduces with increasing pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号