首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We study hypersurfaces in the Lorentz-Minkowski space \mathbbLn+1{\mathbb{L}^{n+1}} whose position vector ψ satisfies the condition L k ψ = + b, where L k is the linearized operator of the (k + 1)th mean curvature of the hypersurface for a fixed k = 0, . . . , n − 1, A ? \mathbbR(n+1)×(n+1){A\in\mathbb{R}^{(n+1)\times(n+1)}} is a constant matrix and b ? \mathbbLn+1{b\in\mathbb{L}^{n+1}} is a constant vector. For every k, we prove that the only hypersurfaces satisfying that condition are hypersurfaces with zero (k + 1)th mean curvature, open pieces of totally umbilical hypersurfaces \mathbbSn1(r){\mathbb{S}^n_1(r)} or \mathbbHn(-r){\mathbb{H}^n(-r)}, and open pieces of generalized cylinders \mathbbSm1(r)×\mathbbRn-m{\mathbb{S}^m_1(r)\times\mathbb{R}^{n-m}}, \mathbbHm(-r)×\mathbbRn-m{\mathbb{H}^m(-r)\times\mathbb{R}^{n-m}}, with k + 1 ≤ m ≤ n − 1, or \mathbbLm×\mathbbSn-m(r){\mathbb{L}^m\times\mathbb{S}^{n-m}(r)}, with k + 1 ≤ nm ≤ n − 1. This completely extends to the Lorentz-Minkowski space a previous classification for hypersurfaces in \mathbbRn+1{\mathbb{R}^{n+1}} given by Alías and Gürbüz (Geom. Dedicata 121:113–127, 2006).  相似文献   

2.
In this paper we consider a compact oriented hypersurface M n with constant mean curvature H and two distinct principal curvatures λ and μ with multiplicities (n − m) and m, respectively, immersed in the unit sphere S n+1. Denote by the trace free part of the second fundamental form of M n , and Φ be the square of the length of . We obtain two integral formulas by using Φ and the polynomial . Assume that B H,m is the square of the positive root of P H,m (x) = 0. We show that if M n is a compact oriented hypersurface immersed in the sphere S n+1 with constant mean curvatures H having two distinct principal curvatures λ and μ then either or . In particular, M n is the hypersurface .   相似文献   

3.
In the Euclidean Space \mathbb Rn+1{\mathbb {R}^{n+1}} with a density ee\frac12 n m2 |x|2, (e = ±1){e^{\varepsilon \frac12 n \mu^2 |x|^2},} {(\varepsilon =\pm1}), we consider the flow of a hypersurface driven by its mean curvature associated to this density. We give a detailed account of the evolution of a convex hypersurface under this flow. In particular, when e = -1{ \varepsilon=-1} (Gaussian density), the hypersurface can expand to infinity or contract to a convex hypersurface (not necessarily a sphere) depending on the relation between the bound of its principal curvatures and μ.  相似文献   

4.
We prove that if ma = mK*da*mK{\mu _{a}\,{=}\,m_{K}*\delta _{a}*m_{K}} is the K-bi-invariant measure supported on the double coset KaK í SU(n){KaK\subseteq SU(n)} , for K = SO(n), then mak{\mu _{a}^{k}} is absolutely continuous with respect to the Haar measure on SU(n) for all a not in the normalizer of K if and only if k ≥ n. The measure, μ a , supported on the minimal dimension double coset has the property that man-1{\mu _{a}^{n-1}} is singular to the Haar measure.  相似文献   

5.
Let H be a multigraph, possibly containing loops. An H-subdivision is any simple graph obtained by replacing the edges of H with paths of arbitrary length. Let H be an arbitrary multigraph of order k, size m, n 0(H) isolated vertices and n 1(H) vertices of degree one. In Gould and Whalen (Graphs Comb. 23:165–182, 2007) it was shown that if G is a simple graph of order n containing an H-subdivision H{\mathcal{H}} and d(G) 3 \fracn+m-k+n1(H)+2n0(H)2{\delta(G) \ge \frac{n+m-k+n_1(H)+2n_0(H)}{2}}, then G contains a spanning H-subdivision with the same ground set as H{\mathcal{H}} . As a corollary to this result, the authors were able to obtain Dirac’s famed theorem on hamiltonian graphs; namely that if G is a graph of order n ≥ 3 with d(G) 3 \fracn2{\delta(G)\ge\frac{n}{2}} , then G is hamiltonian. Bondy (J. Comb. Theory Ser. B 11:80–84, 1971) extended Dirac’s theorem by showing that if G satisfied the condition d(G) 3 \fracn2{\delta(G) \ge \frac{n}{2}} then G was either pancyclic or a complete bipartite graph. In this paper, we extend the result from Gould and Whalen (Graphs Comb. 23:165–182, 2007) in a similar manner. An H-subdivision H{\mathcal{H}} in G is 1-extendible if there exists an H-subdivision H*{\mathcal{H}^{*}} with the same ground set as H{\mathcal{H}} and |H*| = |H| + 1{|\mathcal{H}^{*}| = |\mathcal{H}| + 1} . If every H-subdivision in G is 1-extendible, then G is pan-H-linked. We demonstrate that if H is sufficiently dense and G is a graph of large enough order n such that d(G) 3 \fracn+m-k+n1(H)+2n0(H)2{\delta(G) \ge \frac{n+m-k+n_1(H)+2n_0(H)}{2}} , then G is pan-H-linked. This result is sharp.  相似文献   

6.
To a given immersion i:Mn? \mathbb Sn+1{i:M^n\to \mathbb S^{n+1}} with constant scalar curvature R, we associate the supremum of the squared norm of the second fundamental form sup |A|2. We prove the existence of a constant C n (R) depending on R and n so that R ≥ 1 and sup |A|2 = C n (R) imply that the hypersurface is a H(r)-torus \mathbb S1(?{1-r2})×\mathbb Sn-1 (r){\mathbb S^1(\sqrt{1-r^2})\times\mathbb S^{n-1} (r)}. For R > (n − 2)/n we use rotation hypersurfaces to show that for each value C > C n (R) there is a complete hypersurface in \mathbb Sn+1{\mathbb S^{n+1}} with constant scalar curvature R and sup |A|2 = C, answering questions raised by Q. M. Cheng.  相似文献   

7.
Given a closed subspace ${\mathcal{S}}Given a closed subspace S{\mathcal{S}} of a Hilbert space H{\mathcal{H}}, we study the sets FS{\mathcal{F}_\mathcal{S}} of pseudo-frames, CFS{\mathcal{C}\mathcal{F}_\mathcal{S}} of commutative pseudo-frames and \mathfrakXS{\tiny{\mathfrak{X}}_{\mathcal{S}}} of dual frames for S{\mathcal{S}}, via the (well known) one to one correspondence which assigns a pair of operators (F, H) to a frame pair ({fn}n ? \mathbbN,{hn}n ? \mathbbN){(\{f_n\}_{n\in\mathbb{N}},\{h_n\}_{n\in\mathbb{N}})},
F:l2H,     F({cn}n ? \mathbbN )=?n cn fn,F:\ell^2\to\,\mathcal{H}, \quad F\left(\{c_n\}_{n\in\mathbb{N}} \right)=\sum_n c_n f_n,  相似文献   

8.
For every positive integer n, consider the linear operator U n on polynomials of degree at most d with integer coefficients defined as follows: if we write ${\frac{h(t)}{(1 - t)^{d + 1}}=\sum_{m \geq 0} g(m) \, t^{m}}For every positive integer n, consider the linear operator U n on polynomials of degree at most d with integer coefficients defined as follows: if we write \frach(t)(1 - t)d + 1=?m 3 0 g(m)  tm{\frac{h(t)}{(1 - t)^{d + 1}}=\sum_{m \geq 0} g(m) \, t^{m}} , for some polynomial g(m) with rational coefficients, then \fracUnh(t)(1- t)d+1 = ?m 3 0g(nm)  tm{\frac{{\rm{U}}_{n}h(t)}{(1- t)^{d+1}} = \sum_{m \geq 0}g(nm) \, t^{m}} . We show that there exists a positive integer n d , depending only on d, such that if h(t) is a polynomial of degree at most d with nonnegative integer coefficients and h(0) = 1, then for nn d , U n h(t) has simple, real, negative roots and positive, strictly log concave and strictly unimodal coefficients. Applications are given to Ehrhart δ-polynomials and unimodular triangulations of dilations of lattice polytopes, as well as Hilbert series of Veronese subrings of Cohen–Macauley graded rings.  相似文献   

9.
Suppose (N n , g) is an n-dimensional Riemannian manifold with a given smooth measure m. The P-scalar curvature is defined as ${P(g)=R^m_\infty(g)=R(g)-2\Delta_g{\rm log}\,\phi-|\nabla_g{\rm log}\,\phi|_g^2}Suppose (N n , g) is an n-dimensional Riemannian manifold with a given smooth measure m. The P-scalar curvature is defined as P(g)=Rm(g)=R(g)-2Dglog f-|?glog f|g2{P(g)=R^m_\infty(g)=R(g)-2\Delta_g{\rm log}\,\phi-|\nabla_g{\rm log}\,\phi|_g^2}, where dm=f dvol(g){dm=\phi\,dvol(g)} and R(g) is the scalar curvature of (N n , g). In this paper, under a technical assumption on f{\phi}, we prove that f{\phi}-stable minimal oriented hypersurface in the three-dimensional manifold with nonnegative P-scalar curvature must be conformally equivalent to either the complex plane \mathbbC{\mathbb{C}} or the cylinder \mathbbR×\mathbbS1{\mathbb{R}\times\mathbb{S}^1}.  相似文献   

10.
Consider a family of smooth immersions F(·,t) : Mn? \mathbbRn+1{F(\cdot,t)\,:\,{M^n\to \mathbb{R}^{n+1}}} of closed hypersurfaces in \mathbbRn+1{\mathbb{R}^{n+1}} moving by the mean curvature flow \frac?F(p,t)?t = -H(p,t)·n(p,t){\frac{\partial F(p,t)}{\partial t} = -H(p,t)\cdot \nu(p,t)}, for t ? [0,T){t\in [0,T)}. We show that at the first singular time of the mean curvature flow, certain subcritical quantities concerning the second fundamental form, for example ò0tòMs\frac|A|n + 2 log (2 + |A|) dmds,{\int_{0}^{t}\int_{M_{s}}\frac{{\vert{\it A}\vert}^{n + 2}}{ log (2 + {\vert{\it A}\vert})}} d\mu ds, blow up. Our result is a log improvement of recent results of Le-Sesum, Xu-Ye-Zhao where the scaling invariant quantities were considered.  相似文献   

11.
A string is a pair (L, \mathfrakm){(L, \mathfrak{m})} where L ? [0, ¥]{L \in[0, \infty]} and \mathfrakm{\mathfrak{m}} is a positive, possibly unbounded, Borel measure supported on [0, L]; we think of L as the length of the string and of \mathfrakm{\mathfrak{m}} as its mass density. To each string a differential operator acting in the space L2(\mathfrakm){L^2(\mathfrak{m})} is associated. Namely, the Kreĭn–Feller differential operator -D\mathfrakmDx{-D_{\mathfrak{m}}D_x} ; its eigenvalue equation can be written, e.g., as
f(x) + z ò0L f(yd\mathfrakm(y) = 0,    x ? \mathbb Rf(0-) = 0.f^{\prime}(x) + z \int_0^L f(y)\,d\mathfrak{m}(y) = 0,\quad x \in\mathbb R,\ f^{\prime}(0-) = 0.  相似文献   

12.
Let M be an n-dimensional complete noncompact Riemannian manifold, h be a smooth function on M and dμ = e h dV be the weighted measure. In this article, we prove that when the spectrum of the weighted Laplacian \trianglem{\triangle_{\mu}} has a positive lower bound λ1(M) > 0 and the m(m > n)-dimensional Bakry-émery curvature is bounded from below by -\fracm-1m-2l1(M){-\frac{m-1}{m-2}\lambda_1(M)}, then M splits isometrically as R × N whenever it has two ends with infinite weighted volume, here N is an (n − 1)-dimensional compact manifold.  相似文献   

13.
Let W ì \mathbb Cd{\Omega \subset{\mathbb C}^{d}} be an irreducible bounded symmetric domain of type (r, a, b) in its Harish–Chandra realization. We study Toeplitz operators Tng{T^{\nu}_{g}} with symbol g acting on the standard weighted Bergman space Hn2{H_\nu^2} over Ω with weight ν. Under some conditions on the weights ν and ν 0 we show that there exists C(ν, ν 0) > 0, such that the Berezin transform [(g)\tilde]n0{\tilde{g}_{\nu_{0}}} of g with respect to H2n0{H^2_{\nu_0}} satisfies:
\labele0||[(g)\tilde]n0||C(n,n0)||Tng||,\label{e0}\|\tilde{g}_{\nu_0}\|_\infty \leq C(\nu,\nu_0)\|T^\nu_g\|,  相似文献   

14.
Let ${\Gamma < {\rm SL}(2, {\mathbb Z})}Let G < SL(2, \mathbb Z){\Gamma < {\rm SL}(2, {\mathbb Z})} be a free, finitely generated Fuchsian group of the second kind with no parabolics, and fix two primitive vectors v0, w0 ? \mathbb Z2  \  {0}{v_{0}, w_{0} \in \mathbb {Z}^{2} \, {\backslash} \, \{0\}}. We consider the set S{\mathcal {S}} of all integers occurring in áv0g, w0?{\langle v_{0}\gamma, w_{0}\rangle}, for g ? G{\gamma \in \Gamma} and the usual inner product on \mathbb R2{\mathbb {R}^2}. Assume that the critical exponent δ of Γ exceeds 0.99995, so that Γ is thin but not too thin. Using a variant of the circle method, new bilinear forms estimates and Gamburd’s 5/6-th spectral gap in infinite-volume, we show that S{\mathcal {S}} contains almost all of its admissible primes, that is, those not excluded by local (congruence) obstructions. Moreover, we show that the exceptional set \mathfrak E(N){\mathfrak {E}(N)} of integers |n| < N which are locally admissible (n ? S   (mod  q)   for all   q 3 1){(n \in \mathcal {S} \, \, ({\rm mod} \, q) \, \, {\rm for\,all} \,\, q \geq 1)} but fail to be globally represented, n ? S{n \notin \mathcal {S}}, has a power savings, |\mathfrak E(N)| << N1-e0{|\mathfrak {E}(N)| \ll N^{1-\varepsilon_{0}}} for some ${\varepsilon_{0} > 0}${\varepsilon_{0} > 0}, as N → ∞.  相似文献   

15.
We construct an explicit intertwining operator L{\mathcal L} between the Schr?dinger group eit \frac\triangle2{e^{it \frac\triangle2}} and the geodesic flow on certain Hilbert spaces of symbols on the cotangent bundle T*X Γ of a compact hyperbolic surface X Γ = Γ\D. We also define Γ-invariant eigendistributions of the geodesic flow PSj, k, nj,-nk{PS_{j, k, \nu_j,-\nu_k}} (Patterson-Sullivan distributions) out of pairs of \triangle{\triangle} -eigenfunctions, generalizing the diagonal case j = k treated in Anantharaman and Zelditch (Ann. Henri Poincaré 8(2):361–426, 2007). The operator L{\mathcal L} maps PSj, k, nj,-nk{PS_{j, k, \nu_j,-\nu_k}} to the Wigner distribution WGj,k{W^{\Gamma}_{j,k}} studied in quantum chaos. We define Hilbert spaces HPS{\mathcal H_{PS}} (whose dual is spanned by {PSj, k, nj,-nk{PS_{j, k, \nu_j,-\nu_k}}}), resp. HW{\mathcal H_W} (whose dual is spanned by {WGj,k}{\{W^{\Gamma}_{j,k}\}}), and show that L{\mathcal L} is a unitary isomorphism from HW ? HPS.{\mathcal H_{W} \to \mathcal H_{PS}.}  相似文献   

16.
It is proved that if positive definite matrix functions (i.e. matrix spectral densities) S n , n=1,2,… , are convergent in the L 1-norm, ||Sn-S||L1? 0\|S_{n}-S\|_{L_{1}}\to 0, and ò02plogdetSn(eiqdq?ò02plogdetS(eiqdq\int_{0}^{2\pi}\log \mathop{\mathrm{det}}S_{n}(e^{i\theta})\,d\theta\to\int_{0}^{2\pi}\log \mathop{\mathrm{det}}S(e^{i\theta})\,d\theta, then the corresponding (canonical) spectral factors are convergent in L 2, ||S+n-S+||L2? 0\|S^{+}_{n}-S^{+}\|_{L_{2}}\to 0. The formulated logarithmic condition is easily seen to be necessary for the latter convergence to take place.  相似文献   

17.
Let ${\mathbb{A}}Let \mathbbA{\mathbb{A}} be a universal algebra of signature Ω, and let I{\mathcal{I}} be an ideal in the Boolean algebra P\mathbbA{\mathcal{P}_{\mathbb{A}}} of all subsets of \mathbbA{\mathbb{A}} . We say that I{\mathcal{I}} is an Ω-ideal if I{\mathcal{I}} contains all finite subsets of \mathbbA{\mathbb{A}} and f(An) ? I{f(A^{n}) \in \mathcal{I}} for every n-ary operation f ? W{f \in \Omega} and every A ? I{A \in \mathcal{I}} . We prove that there are 22à0{2^{2^{\aleph_0}}} Ω-ideals in P\mathbbA{\mathcal{P}_{\mathbb{A}}} provided that \mathbbA{\mathbb{A}} is countably infinite and Ω is countable.  相似文献   

18.
We establish uniform estimates for order statistics: Given a sequence of independent identically distributed random variables ξ 1, … , ξ n and a vector of scalars x = (x 1, … , x n ), and 1 ≤ k ≤ n, we provide estimates for \mathbb E   k-min1 £ in |xixi|{\mathbb E \, \, k-{\rm min}_{1\leq i\leq n} |x_{i}\xi _{i}|} and \mathbb E k-max1 £ in|xixi|{\mathbb E\,k-{\rm max}_{1\leq i\leq n}|x_{i}\xi_{i}|} in terms of the values k and the Orlicz norm ||yx||M{\|y_x\|_M} of the vector y x  = (1/x 1, … , 1/x n ). Here M(t) is the appropriate Orlicz function associated with the distribution function of the random variable |ξ 1|, G(t) = \mathbb P ({ |x1| £ t}){G(t) =\mathbb P \left(\left\{ |\xi_1| \leq t\right\}\right)}. For example, if ξ 1 is the standard N(0, 1) Gaussian random variable, then G(t) = ?{\tfrac2p}ò0t e-\fracs22ds {G(t)= \sqrt{\tfrac{2}{\pi}}\int_{0}^t e^{-\frac{s^{2}}{2}}ds }  and M(s)=?{\tfrac2p}ò0se-\frac12t2dt{M(s)=\sqrt{\tfrac{2}{\pi}}\int_{0}^{s}e^{-\frac{1}{2t^{2}}}dt}. We would like to emphasize that our estimates do not depend on the length n of the sequence.  相似文献   

19.
Let A, B be uniform algebras. Suppose that A 0, B 0 are subgroups of A −1, B −1 that contain exp A, exp B respectively. Let α be a non-zero complex number. Suppose that m, n are non-zero integers and d is the greatest common divisor of m and n. If T : A 0B 0 is a surjection with ||T(f)mT(g)n - a|| = ||fmgn - a||{\|T(f)^{m}T(g)^{n} - \alpha\|_{\infty} = \|f^{m}g^{n} - \alpha\|_{\infty}} for all f,g ? A0{f,g \in A_0}, then there exists a real-algebra isomorphism [(T)\tilde] : A ? B{\tilde{T} : A \rightarrow B} such that [(T)\tilde](f)d = (T(f)/T(1))d{\tilde{T}(f)^d = (T(f)/T(1))^d} for every f ? A0{f \in A_0}. This result leads to the following assertion: Suppose that S A , S B are subsets of A, B that contain A −1, B −1 respectively. If m, n > 0 and a surjection T : S A S B satisfies ||T(f)mT(g)n - a|| = ||fmgn - a||{\|T(f)^{m}T(g)^{n} - \alpha\|_{\infty} = \|f^{m}g^{n} - \alpha\|_{\infty}} for all f, g ? SA{f, g \in S_A}, then there exists a real-algebra isomorphism [(T)\tilde] : A ? B{\tilde{T} : A \rightarrow B} such that [(T)\tilde](f)d = (T(f)/T(1))d{\tilde{T}(f)^d = (T(f)/T(1))^d} for every f ? SA{f \in S_A}. Note that in these results and elsewhere in this paper we do not assume that T(exp A) = exp B.  相似文献   

20.
Yong-Zhuo Chen 《Positivity》2012,16(1):97-106
We apply the Thompson’s metric to study the global stability of the equilibium of the following difference equation
yn = \fracf2m+12m+1 (yn-k1r, yn-k2r, ..., yn-k2m+1r)f2m2m+1 (yn-k1r, yn-k2r, ..., yn-k2m+1r),         n = 0,1,2, ?, y_{n} = \frac{f_{2m+1}^{2m+1} (y_{n-k_{1}}^r, y_{n-k_{2}}^r, \dots, y_{n-k_{2m+1}}^r)}{f_{2m}^{2m+1} (y_{n-k_{1}}^r, y_{n-k_{2}}^r, \dots, y_{n-k_{2m+1}}^r)}, \;\;\;\; n = 0,1,2, \ldots,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号