首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Solid State Sciences》2003,5(5):695-699
We attempted to simplify and unify the former concepts describing the acid base character of oxides on the basis of their band structure. Duffy optical basicity, Smith acid scale and Bratsch electronegativity model can simply be linked by taking into account the electronegativity and the chemical hardness of the oxides: an acidic oxide has a strong electronegativity together with a strong chemical hardness while a basic oxide has a low electronegativity associated with a weak chemical hardness.  相似文献   

2.
The new ideas ofbond electronegativity andbond hardness are introduced, and a semiempirical density functional approach to the theory of molecular electronic structure and chemical binding is outlined. There result effective electronegativity equalization procedures that permit calculation of binding energies as well as partial charges. By a modelling of the bond electronegativity and bond hardness, a density functional interpretation of earlier bond charge models is established. Some numerical results are given for diatomic molecules.Dedicated to Professor J. Koutecký on the occasion of his 65th birthday  相似文献   

3.
We show how ab initio calculations based on density functional theory contribute to the understanding of the electronic and optical properties of organic semiconducting materials, which form the active layers in many opto-electronic applications. As a textbook example, we present the electronic structure and the optical properties of the oligo-phenylenes as evolving from their benzene-constituents. Thereby we discuss the dependence on the molecular length and introduce the modifications in the opto-electronic properties due to intermolecular interactions which are inherently present in the bulk phase.  相似文献   

4.
为了从理论层面深入探究团簇ConMoS (n=1~5)的电子性质、光学性质及磁性,弄清其内在关联,依据拓扑学原理和密度泛函理论,在B3LYP/def2-TZVP量子化学水平和多个自旋多重度下对该团簇进行结构优化并分析。结果表明:团簇ConMoS共有21种稳定构型;通过对NPA (自然布居分析,natural population analysis)电荷、静电势、亲电指数、电离势、光学电负性和折射率等分析得出,金属原子有高概率失去电子,非金属原子相对更容易得到电子,团簇Co5MoS中的构型5a在最稳定构型中有高的得失电子能力、反应活性和折射率,Co和Mo原子易发生亲核反应,S原子易发生亲电反应;对该团簇自旋布居数、原子磁矩、轨道磁矩和态密度分析发现,该团簇磁性主要由Co原子的d轨道提供,且团簇Co3MoS表现出了比其它尺寸团簇更为稳定和优异的磁性。最终得出团簇Co3MoS在磁性方面有较好的表现且构型5a在活性和光学领域有一定的潜力。  相似文献   

5.
A correspondence betweenab initio calculations, the principle of electronegativity equalisation and group electronegativity has been established within the framework of Mulliken population analysis. Using this we have calculated electronegativities of some 37 groups/atoms. These electronegativities show excellent linear correlation with1 J CC coupling constants in monosubstituted benzenes and Inamoto’si scale and a satisfactory one with Wells’ group electronegativity data. The correspondence however required a scaling of charge (obtained byab initio calculations) and a proportionality between the electronegativity of the neutral group and its hardness. It is shown that using these electronegativity values it is possible to calculate group charges in molecules where groups under consideration interact with each other through σ bond only.  相似文献   

6.
Computational and experimental studies using linear muffin tin orbital methods and UV-visible diffuse reflectance spectroscopy, respectively, were performed to quantitatively probe the relationships between composition, crystal structure and the electronic structure of oxides containing octahedrally coordinated d0 transition metal ions. The ions investigated in this study (Ti4+, Nb5+, Ta5+, Mo6+, and W6+) were examined primarily in perovskite and perovskite-related structures. In these compounds the top of the valence band is primarily oxygen 2p non-bonding in character, while the conduction band arises from the π∗ interaction between the transition metal t2g orbitals and oxygen. For isostructural compounds the band gap increases as the effective electronegativity of the transition metal ion decreases. The effective electronegativity decreases in the following order: Mo6+>W6+>Nb5+∼Ti4+>Ta5+. The band gap is also sensitive to changes in the conduction band width, which is maximized for structures possessing linear M-O-M bonds, such as the cubic perovskite structure. As this bond angle decreases (e.g., via octahedral tilting distortions) the conduction band narrows and the band gap increases. Decreasing the dimensionality from 3-D (e.g., the cubic perovskite structure) to 2-D (e.g., the K2NiF4 structure) does not significantly alter the band gap, whereas completely isolating the MO6 octahedra (e.g., the ordered double perovskite structure) narrows the conduction band width dramatically and leads to a significant increase in the band gap. Inductive effects due to the presence of electropositive “spectator” cations (alkali, alkaline earth, and rare-earth cations) tend to be small and can generally be neglected.  相似文献   

7.
8.
Nanostructured coatings have recently attracted increasing interest because of the possibilities of synthesizing materials with unique physical-chemical properties. Highly sophisticated surface related properties, such as optical, magnetic, electronic, catalytic, mechanical, chemical and tribological properties can be obtained by advanced nanostructured coatings, making them attractive for various industrial applications. In this report we describe our efforts at developing methodology for the fabrication of SrFeO3-x based thin films using a modified Pechini method. Thin films of SrFeO3-x were fabricated using spin coating and a drop coating method developed in-house on Al2O3 and Si- substrates. The films annealed at 600°C for one hour show a perovskite phase. The grain size increases with increase in annealing temperature. The influence of various variables such as metal to chelant ratio, drying control reagents, calcination conditions, substrate type and mode of film formation were studied using XRD, optical microscopy, SEM and AFM.  相似文献   

9.
The structures and properties of electroactive coatings based on fullerene and pyridyl-substituted fullerenopyrrolidines were studied using cyclic voltammetry, optical spectroscopy, atomic force microscopy, and other methods. The surface of the electrode of the ITO conducting glass (alloy of indium and tin oxides) was modified by direct casting or the introduction of an electroactive substance into a tetra(n-octyl)ammonium bromide matrix. Changes in the absorption spectra of the coatings agree with the presence of an electronic interaction between adjacent fullerene molecules. Tetra(n-octyl)ammonium bromide is involved in the organization of the fullerene-containing coatings with retention of the layered structure. According to the data of atomic force microscopy, the coating surface depends on both the composition of the solution and preparation method and the nature of addends in a C60 molecule. The dispersion of fullerene in the tetra(n-octyl)ammonium bromide matrix and its interaction with the alkyl groups of the latter provide the hydrophobic microenvironment necessary for reversible electrochemical processes in an aqueous solution to occur. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 308–315, February, 2008.  相似文献   

10.
The experimental approaches to estimation of comparative electronegativity and chemical hardness of organometallic groups have been proposed. Qualitative data on the electronegativity of L nM groups were obtained from 19F NMR study of model systems 4‐FC6H4QMLn (Q = CC, N(R), O, C(O)O, S), (4‐FC6H4)3 SnML n and (4‐FC6H4)3SnQML n (Q = O, S), containing a great variety of different organometallic groups containing transition or heavy main‐group metals. The data on chemical hardness of L nM groups were obtained from NMR study of distribution of different L nM groups between hard and soft anions. The following basic results have been obtained. (1) The relative electronegativity and chemical hardness of L nM groups can change in parallel or not with the electronegativity and hardness of the central metal atom. (2) The substituents in Ar can substantially modify electronegativity and hardness of Ar nM groups; the influence of Ar groups has an inductive nature; the increase in electron‐donating ability of aryl ligands enhances the hardness of Ar nM cations. (3) The relative electronegativity and hardness of L nM groups in L nMX are invariant and do not depend on X.  相似文献   

11.
The macroscopic solvent effect on static nonlinear polarizabilities of a number of intramolecular charge-transfer (ICT) molecules have been studied by using the self-consistent-reaction field (SCRF) model in the framework of ab initio time-dependent-HF (TDHF) method using 3-21G basis set. The two-state model of static β and <γ> have been used to obtain their functional dependence on the ground-state hardness parameter, dipole moment and solvation energy. The methyl substituted 4-quinopyran and other zwitterionic molecules are found to exhibit strong diminution of both quadratic and cubic polarizabilities at higher solvent reaction field due to negative solvatochromic effect. However, molecules showing positive solvatochromism lead to strong enhancement of the NLO response on increase in solvent polarity. The evolution pattern of the solvent modulated static β and <γ> of 4-quinopyran (4QP) obtained for varying inter-ring torsion angle differ strikingly from that shown by p-amino p'-nitro biphenyl (ANB).  相似文献   

12.
一种新型低带隙共轭聚合物的合成及其光学性质   总被引:2,自引:0,他引:2  
刘中义  李彦军  黄鹏程 《化学学报》2008,66(8):999-1002
在钯催化剂作用下, 通过4,7-二(5-溴-2-噻吩基)[2,1,3]苯并噻二唑与2,5-二乙炔基-3-辛基噻吩的偶联反应, 合成了一种新的共轭高分子聚4,7-二(2-噻吩基)苯并噻二唑-3-辛基噻吩二炔(PTE-DTBT). 通过紫外可见吸收光谱及荧光光谱对其光学性质进行了研究. 紫外-可见吸收谱结果表明, PTE-DTBT的固体膜光学带隙为1.71 eV; 电化学测试其带隙为1.88 eV. TiO2/PTE-DTBT共混固体膜的荧光发射谱结果表明电子供体PTE-DTBT分子与电子受体TiO2分子间存在有效的电子转移.  相似文献   

13.
The polycarbazoles have been proved to be a good organic semiconductor. These are investigated by quantum chemical studies using B3LYP density functional theory (DFT), and the studies have given a detailed understanding on the impact of carbazole units and an introduction to the electron donating on the optoelectronic properties. The electron withdrawing groups of halogen atoms (chlorine, bromine and iodine) have been substituted into the side chain of the poly[3,6-carbazoles] (PCs) and poly[indolo(3,2-b)-carbazoles] (PICs) and analysed. The band was assigned in the gas phase at 354.8 and 365.1 nm for PCs and PICs which are in good agreement with experimental values of 350 and 390 nm. The calculated results show that the selected three halogen derivatives exhibit a strong blue shift in the toluene solvent medium, with high electronic transition. It is found that PCs, PICs and their derivatives have a narrow band derived in the conduction band, and it is composed of 3p, 4p and 5p states; thus, the energy gap of PCs and PICs increased between the highest occupied molecular orbital and lowest unoccupied molecular orbital energy level by the addition of electron acceptor group atoms. The doped PC and PIC electronegativities are well plotted by an electrostatic potential map, and the plot reveals that chlorine-doped PCs and PICs have less electronegativity and bromine-doped polymer has high electronegativity than that of the chlorine-doped polymers. The results obtained from these studies will expose the affairs between the molecular geometry and electronic and optical properties of the investigated polymers.  相似文献   

14.
Single crystalline nanowires of lead titanate (PbTiO3) were fabricated by hydrothermal method at 200°C using lead acetate and n-tetrabutyl titanate as starting materials, where sodium hydroxide was served as a mineralizer. Crystalline phases, microstructure and optical properties of PbTiO3 nanowires were investigated. The PbTiO3 nanowires were uniform and continuous along the long axis, and were composed of single crystalline PbTiO3 with a tetragonal perovskite structure. The diameter of a single nanowire was around 12 nm and the length reached up to 3 μm. The chemical composition of the samples and the valence states of elements were determined by X-ray photoelectron spectroscopy (XPS). The ultraviolet/visible absorption spectroscopic investigation suggested that the absorption edge of optical transition of the first excitonic state occurred at around 320 nm. A blue-green light emission peaking at about 471 nm (2.63 eV) is observed at room temperature, and the intensity of this emission increased with increasing excitation wavelength. Oxygen vacancies are responsible for the light emission of PbTiO3 nanowires.  相似文献   

15.
Using the first principles FLAPW-GGA method, comparative study of structural, electronic properties and of chemical bonding in four 1111-like chalcogenide oxides LaMChO (LaCuSO, LaCuSeO, LaAgSO, and LaAgSeO) with ZrCuSiAs-type structure was performed. Our studies showed that: (i) replacements of d metal atoms (Cu ↔ Ag) and chalcogen atoms (S ↔ Se) lead to anisotropic deformations of the crystal structure; this effect is related to strong anisotropy of inter-atomic bonds; (ii) all of the examined chalcogenide oxides are semiconducting; the band gap decreases both at S → Se and Cu → Ag substitutions; and (iii) the bonding in LaMChO phases can be classified as a high-anisotropic mixture of ionic and covalent contributions, where mixed covalent-ionic bonds take place inside [La2O2] and [M2Ch2] blocks, whereas between the adjacent [La2O2]/[M2Ch2] blocks, ionic bonds emerge owing to [La2O2] → [M2Ch2] charge transfer. Since the near-Fermi bands of LaMChO phases originate mainly from electronic states of [M2Ch2] blocks, we speculate that chemical substitutions inside these blocks can result in striking differences in electronic properties of these systems; therefore, this approach can be promising for significant enlargement of the functional properties of these materials.  相似文献   

16.
17.
We investigate surface-enhanced Raman scattering (SERS) spectra of pyridine–Agn (n = 2–8) complexes by density functional theory (DFT) and time-dependent DFT (TDDFT) methods. In simulated normal Raman scattering (NRS) spectra, profiles of pyridine–Agn (n = 2–8) complexes are analogical with that of isolated pyridine. Nevertheless, calculated pre-SERS spectra are strongly dependent on electronic transition states of new complexes. Wavelengths at 335 nm, 394.8 nm, 316.9 nm and 342.6 nm, which are nearly resonant with pure charge transfer excitation states, are adopted as incident light when simulating pre-SERS spectra for pyridine–Agn (n = 2–8) complexes, respectively. We obtain enhancement factors from 103 to 105 in pre-SERS spectra compared with corresponding NRS spectra. The obvious increase in Raman intensities mainly result from charge transfer resonance Raman enhancement. A charge difference densities (CDDs) methodology is adopted in describing chemical enhancement mechanism. This methodology aims at visualizing charge transfer from Agn (n = 2–8) clusters to pyridine on resonant electronic transition, which is one of the most direct evidences for chemical enhancement mechanism.  相似文献   

18.
We present density functionary theory (DFT) calculations on the structural parameters and electronic structure for iridium nitride by using the generalized gradient approximation (GGA) and the Perdew–Burke–Ernserhof (PBE) exchange-correlation functional. The lattice parameters and bulk modulus (B 0) for the ground state are obtained, and the energy band structure and electron densities of states (DOS) of IrN2 are presented. It is found that IrN2 has a very close indirect energy gap. There is a strong covalent bond between the two nearest N atoms. This gives rise to a very high elastic modulus of IrN2 and reveals the quasimolecular nature of the N2 in IrN2 crystal. Lattice parameters, bulk modulus, and the electronic structure of IrN2 under high pressure have also been investigated based on DFT. The compressibility along three cell vectors is very close to each other. The band gap increases a little with the pressure even when the pressure is up to 100 Gpa.  相似文献   

19.
Density functional calculations were performed on electronic and optical properties of C (or N)-doped cubic cerium dioxide (CeO2). When O is replaced by C (or N) in CeO2, obvious band-gap (Eg) reduction is observed. Meanwhile, it is interesting to find that the substitutional doping of C (or N) in CeO2 obviously increases the O 2p–Ce 4f transition intensity and also the refractive index. The increase in the O 2p–Ce 4f transition intensity on going from undoped, N-doped and C-doped CeO2 was related to the covalent character of the Ce–O bond. Compared with the undoped CeO2, the C (or N)-doped CeO2, with steep absorption peaks at lower energy, can be used for visible-light absorption applications.  相似文献   

20.
Summary Numerical correlations between the specific retention volumes of several dozen solutes (hydrocarbons and derivatives containing oxygen, nitrogen and halogens) and between the retention indices, from the literature, of 26 chemical derivatives of benzene on several stationary phases have been studied. Although significant linear correlations were usually obtained between logV g and the valence connectivity indices,1 X v , for hydrocarbons and non-hydrocarbons with the same chemical function, the relationship between logV g and the Wiener,W, and Balaban,J, indices for hydrocarbons was found to be non-linear. Correlations between retention index increments and valence connectivity index increments for the 26 chemical derivatives of benzene were linear for alkyl substituents only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号