首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyimides of different structures were synthesized by reaction of 1,4-phenylene diisocyanate (PPDI) and 1,5-naphthalene diisocyanate (NDI) with pyromellitic dianhydride (PMDA) and 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA). Polyamide-imides were also prepared by reaction of PPDI and NDI with trimellitic anhydride. The optimized condition for polymerization reactions were obtained via the study of model compounds. All polymers and model compounds were characterized by conventional methods. Physical properties of polymers, including thermal behavior, thermal stability, solution viscosity, and solubility behavior, were also studied. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2245–2250, 1999  相似文献   

2.
The reaction of phthalic thioanhydride and aniline yielded N-phenylphthalimide quite readily. The reaction was strongly dependent on solvent and temperature. Various additives tried as a reaction promoter were almost ineffective. By the extension of the model reaction, polyimides were prepared in a simple one-step synthesis from pyromellitic dithioanhydride and aromatic diamines in dimethylacetamide or other solvents. Polymers with inherent viscosity up to 0.3 in concentrated sulfuric acid were obtained in approximately quantitative yield.  相似文献   

3.
This article describes the synthesis of N,N′-bis(3,3′-maleimidophenyl) sulfone (S) and its Michael addition products with (4,4′-diaminodiphenyl) methane (S-M), 4,4′-diaminodiphenyl ether (S-E), (3,3′-diaminodiphenyl) sulfone (S-DDSm), (4,4′-diaminodiphenyl) sulfone (S-DDSp), (3,3′,3″-tris aminophenyl) phosphine oxide (S-TAP), and 9,9-bis(p-aminophenyl) fluorene (S-B). Curing behavior of these bisimides was investigated by differential scanning calorimetry. Activation energy of curing reaction was determined by using isothermal and multiple heating rate method. Thermal stability of bisimides was evaluated by thermogravimetric analysis. Better char yields were obtained in S-TAP resins.  相似文献   

4.
Novel polyimides and polyimides having phenoxathiin units have been prepared. Polyamides with inherent viscosities in the range of 0.5–2.9 were readily prepared by the polycondensations of phenoxathiin diamines with aromatic diacyl chlorides and of aromatic diamines with new phenoxathiin diacyl chlorides. The polyimides were synthesized from phenoxathiin diamines and pyromellitic dianhydride by using a two-step procedure. The polyamic acids which formed in the first step had inherent viscosities ranging from 1.0 to 1.6, and they were converted to the polyimides by thermal cyclodehydration. Some of the phenoxanthiin-containing polyamides were highly soluble in polar amide solvents and dimethyl sulfoxide. A series of novel polymers containing phenoxathiin units were much more thermostable than the corresponding polymers having open-chain diphenyl ether linkages.  相似文献   

5.
A novel triaryl imidazole‐containing diamine, 3,5‐diamino‐N‐(4‐(4,5‐diphenyl‐1H‐imidazol)phenyl)benzamide, was successfully synthesized via the condensation of 4‐(4,5‐diphenyl‐1H‐imidazol)benzenamine and 3,5‐dinitrobenzoyl chloride, followed by reduction of the dinitro compound. A series of new aromatic polyimides with pendent triaryl imidazole moieties were prepared from the reaction of this diamine with various tetracarboxylic dianhydrides by a conventional two‐step polymerization process via thermal and chemical imidizations. The polyimides were obtained in quantitative yields with inherent viscosities of 0.21–0.44 dL/g. All the polymers are readily soluble in polar organic solvents. Flexible and strong films of polyimides were obtained by solution casting. The glass transition temperature of these polymers was in the range of 261–264°C. They were fairly stable up to a temperature around 300°C and lost 10% weight at 408°C under nitrogen. The ultraviolet–visible absorption spectra showed that all of the polymers had absorption maxima around 320 nm with a fluorescence emission maxima around 388–407 nm in N‐methyl‐2‐pyrrolidinone solution. Cyclic voltammograms of the polyimides revealed an oxidation wave with a peak around 1.7 V. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
New polyimides containing diamantane units were prepared by a conventional two-step method starting from 1,6-diaminodiamantane and aromatic dianhydrides. The intermediate poly(amic acid)s had inherent viscosities of 0.33–0.55 dL/g. These polyimides did not decompose below 400°C in air or nitrogen atmosphere, and the temperature at 5% weight loss were above 491°C. The glass transition temperatures of the polyimides were found to be 375–429°C by DSC. These polyimides had almost the same semicrystalline patterns and exhibited crystalline diffraction peak (2 θ) at around 15°. The polyimide Vb exhibited a melting endothermic peak at 514°C. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
1,3-Diaminoadamantane (I) was used as a monomer with various aromatic dicarboxylic acyl chlorides and dianhydrides to synthesize polyamides and polyimides, respectively. Polyamides having inherent viscosities of 0.10–0.27 dL/g were prepared by low-temperature solution polycondensation. The polyamides were soluble in a variety of solvents such as N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), pyridine, dioxane, and nitrobenzene. These polyamides had glass transition temperatures in the 179–187°C range and 5% weight loss temperatures occurred at up to 354°C. Polyimides based on diamine I and various aromatic dianhydrides were synthesized by the two-stage procedure that included ring-opening to form polyamic acids, followed by thermal conversion to polyimides. The polyamic acids had inherent viscosities of 0.14–0.38 dL/g. The glass transition temperature of these polyimides were in the 245–303°C range and showed almost no weight loss up to 350°C under air and nitrogen atmosphere. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
New phenoxaphosphine-containing polyimides were synthesized from 10-phenylphenoxaphosphine-2,3,7,8-tetracarboxylic dianhydride 10-oxide (IV) and diamines via polyamic acids in two steps. (IV) was prepared by dehydration of 10-phenylphenoxaphosphine-2,3,7,8-tetracarboxylic acid 10-oxide (III) derived from 2,3,7,8-tetramethyl-10-phenylphenoxaphosphine (I) or 2,3,7,8-tetramethyl-10-phenylphenoxaphosphine 10-oxide (II) by pyridine-permanganate oxidation. (I) was synthesized from bis(3,4-dimethylphenyl)ether and phenylphosphonous dichloride by the Friedel-Crafts reaction. The resulting polyimides had reduced viscosities of 0.13–0.84 di/g in cone H2SO4 at 30°. They were also soluble in dichloroacetic acid and some of them dissolved in DMA, DMSO. DMF and chloroform. Aromatic phenoxaphosphine-containing polyimides exhibited excellent thermal properties and hardly degraded below about 500°; the aliphatic polyimides decomposed at around 500. The aromatic polyimides had thermal stability similar or superior to aromatic polypyromellitimides and better heat resistance than linear open-chain phosphorus-containing polyimides. These polyimides showed retardance to inflammation.  相似文献   

9.
Several highly soluble polyimides were synthesized from various aromatic tetracarboxylic dianhydrides and an aromatic diamine containing tert‐butyl pendent groups [4,4′‐methylenebis(2‐tert‐butylaniline)]. All the polyimides showed excellent solubility in common solvents such as chloroform, tetrahydrofuran, and dioxane at room temperature. The number‐average molecular weight ranged from 3.6 × 104 to 1.3 × 105 according to gel permeation chromatography relative to a polystyrene standard, and the polydispersity index was between 1.9 and 2.5. The glass‐transition temperatures of the resulting polyimides ranged from 213 to 325 °C, as measured by differential scanning calorimetry, and little weight loss was observed up to 450 °C in N2 by thermogravimetric analysis. These experimental data indicated that the tert‐butyl pendent groups reduced the interactions among polymer chains to improve their solubility in organic solvents without the loss of thermal stability. Transparent and flexible films of these polyimides were obtained via casting from solution. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 229–234, 2002  相似文献   

10.
A series of aromatic diamines containing pendent methoxy, phenoxy, and biphenoxy moieties were synthesized. By the reaction of diamines with 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA), several kinds of polyimides having bulky pendent ether groups were synthesized. Thermal properties and processability such as melt processability and solubility in organic solvents of obtained polyimides were investigated by focusing on the chemical structures of their repeating structure units. It was found that the thermal stability and melt processability of the polyimides did not strongly depend on the existence of bulky pendent phenoxy and biphenoxy moieties. Their solubility in organic solvents, however, was improved by introducing the bulky pendent ether groups such as methoxy, phenoxy, and biphenoxy moieties into their repeating structure units. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 971–978, 1998  相似文献   

11.
12.
In aqueous hydrobromic acid the reaction between antimony tribromide and amine hydrobromides gives rise to only one type of bromoantimonate(III), irrespective of the initial ratio of the reactants. Different types of bromoantimonates containing the same protonated amine cation have been prepared by the interaction of antimony tribromide with the amine hydrobromide, in appropriate ratios, at higher temperatures in the absence of solvent and also by a metathetical reaction between an amine hydrobromide and bromoantimonate of another amine in acetone. Conductimetric titrations of antimony tribromide with amine hydrobromides in isopropanol were used to establish the stoichiometry of these reactions.  相似文献   

13.
In this work, thermal solution imidization kinetics of two high performance polyimides, prepared from the polycondensation of pyromellitic dianhydride (PMDA) and 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) with 4,4′-bis(3-aminophenoxy)diphenylsulfone (DAPDS) were investigated using nonaqueous titration technique with tetramethylammonium hydroxide. Most of the kinetic investigations, found in the literature, are based on the aromatic p-diamines.1,2 In the present work, attention was focused on imidization kinetics with m-substituted aromatic diamines having electron donating ( O ) and electron withdrawing ( SO2 ) groups in the same molecule. Kinetic parameters, namely the rate constants, activation energies, entropies and enthalpies of imidization reactions were determined and compared with the literature values. It is reported in literature3 that electron affinities of dianhydrides and ionization potentials of diamines, have strong influence on the reaction rate and activation energies of imidization. Activation energy (Ea) values were found to be 66 and 57 kJ/mol for DAPDS/PMDA and DAPDS/BTDA respectively, and order of reaction was found to be second order. Polyimides DAPDS/PMDA and DAPDS/BTDA, subjected to kinetic investigation, showed glass transition temperatures of 267°C and 241°C, both were found to be thermally stable up to 500°C. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2981–2990, 1997  相似文献   

14.
The polycondensation of polymerizable diamines bearing two generations of Percec‐type dendritic blocks with dianhydrides led to the formation of novel aromatic polyamic acids that then were converted into a series of novel aromatic polyimides jacked with dendritic fragments. Their solubility in organic solvents was improved remarkably by the introduction of the dendritic fragments, especially in the case of the polyamides and polyamic acids, and the polymers were soluble in normal solvents such as ethyl acetate, acetone, and chloroform. Their thermal properties were investigated with differential scanning calorimetry and thermogravimetric analysis. The glass‐transition temperatures of these polyamides were lower than those of the conventional aramids. All of the polyamides, polyamic acids, and polyimides bearing the dendritic fragments showed two decomposition stages. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 189–197, 2000  相似文献   

15.
刘成杰  洪珊 《化学研究与应用》2007,19(10):1080-1083,1088
本文合成了含长烷基侧链的二胺单体3,5-二氨基苯甲酸(4-烷氧基)苯酯,然后使它与2,2-双[4.(3,4-二羧酸基苯氧基)苯基]丙烷二酐在N甲基-2-吡咯烷酮溶液中聚合,再通过化学酰亚胺化得到一系列含有长烷基侧链的聚酰亚胺。聚酰亚胺的结构经红外光谱和核磁共振氢谱确认,并对它的溶解性能、特征粘数、光学性能和热性能等进行了表征。结果表明,所合成的聚酰亚胺具有好的溶解性能、较高的分子量、优异的透光率和较好的热稳定性。  相似文献   

16.

New compounds with formulae Y(2,4′-bpy)1.5Cl3·8H2O (I), Y(2,4′-bpy)0.5Br3·8H2O (II), La(2,4′-bpy)Cl3·5H2O (III) and La(2,4′-bpy)1.5Br3·5H2O (IV) were prepared and characterized by chemical and elemental analysis, IR spectroscopy and powder X-ray diffraction. The thermal properties of compounds in the solid state were studied using TG-DTA techniques under dry air atmosphere. The thermal behavior of investigated compounds was studied in the temperature range 298–1273 K. They are stable up to 323 K. The complexes decompose in several stages, accompanied by endo- and exothermic effects. In all cases, the first step of pyrolysis is partial or total dehydration. When the temperature rises, deamination takes place. The solid final products of decomposition are Y2O3 and La2O3, respectively. Additionally, for all complexes mass spectrometry was used to analyze principal volatile thermal decomposition and fragmentation products evolved during pyrolysis under dry air atmosphere.

  相似文献   

17.
18.
Functional polyimides (PIs) having some desired properties, for example, organo-solubility, chemical reactivity, crosslinkable feature, and high transparency in visible region, are attractive for specific applications. This work reports an effort to integrate the above-mentioned properties in one polyimide through introduction of Meldrum's acid (MA) moieties to polyimide chains with using a MA-containing diamine (MADA) as a monomer. The polyimide prepared with MADA and 4,4′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) (PI[MADA-6FDA]) has a number-averaged molecular weight of 56,800 g mol−1, shows good solubility in tetrahydrofuran and aprotic high polar solvents, and exhibits post-reactivity/crosslinkability through MA-mediated ketene chemistry. Crosslinked PI(MADA-6FDA) film shows a glass transition temperature of 289°C, a dielectric constant of about 2.78, and high flexibility bearing a near-180° bending. The MA-mediated ketene chemistry contributes to in situ building up covalent linkages between PI chains and silica nanoparticles (SNPs) in preparation of PI/SNPs nanocomposite films (NCF). Formation of the PI/SNPs NCFs enhances the thermal and mechanical properties, reduces the dielectric constants, and increases the transparency. The properties of the MA-functionalized PI are attractive for further studies on their applications.  相似文献   

19.
Photoinitiated reaction of maleic anhydride with chlorobenzene and o-chlorotoluene in the presence of a sensitizer (benzophenone) was studied with the aim to prepare chlorinated tricyclodecenetetracarboxylic dianhydrides. New halogenated polyimides were prepared by the reactions of these products with various diamides in N-methyl-2-pyrrolidone in the presence of catalysts.Translated from Zhurnal Prikladnoi Khimii, Vol. 77, No. 11, 2004, pp. 1853–1857.Original Russian Text Copyright © 2004 by Zhubanov, Kravtsova, Mukhamedova.  相似文献   

20.
Two series of new organosoluble and thermally stable polyimides containing anthracene, and fluorene pendants were prepared by a two-step solution polycondensation reaction of new synthesized diamines with commercially available dianhydrides. All intermediates and polymers were fully characterized by FTIR, NMR, and elemental analysis and their properties including solubility and thermal stability were studied. All the resulting polymers were amorphous with inherent viscosities ranged from 0.61 to 0.84 dL/g and were readily soluble in many organic solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号