首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cavity ringdown spectroscopy using mid-infrared quantum-cascade lasers   总被引:2,自引:0,他引:2  
Cavity ringdown spectra of ammonia at 10 parts in 10(9) by volume (ppbv) and higher concentrations were recorded by use of a 16-mW continuous-wave quantum-casacde distributed-feedback laser at 8.5 mum whose wavelength was continuously temperature tuned over 15 nm. A sensitivity (noise-equivalent absorbance) of 3.4x10(-9) cm(-1) Hz(-1/2) was achieved for ammonia in nitrogen at standard temperature and pressure, which corresponds to a detection limit of 0.25 ppbv.  相似文献   

2.
Lasing characteristics were evaluated for distributed-feedback quantum-cascade (QC) lasers operating in a continuous mode at cryogenic temperatures. These tests were performed to determine the QC lasers' suitability for use in high-resolution spectroscopic applications, including Doppler-limited molecular absorption and pressure-limited lidar applications. By use of a rapid-scan technique, direct absorbance measurements of nitric oxide (NO) and ammonia (NH>(3)) were performed with several QC lasers, operating at either 5.2 or 8.5 microm. Results include time-averaged linewidths of better than 40 MHz and long-term laser frequency reproducibility, even after numerous temperature cycles, of 80 MHz or better. Tuning rates of 2.5 cm(-1) in 0.6 ms can be easily achieved. Noise-equivalent absorbance of 3 x 10(-6) was also obtained without optimizing the optical arrangement.  相似文献   

3.
The interfaces of a dielectric sample are resolved in reflection geometry using light from a frequency agile array of terahertz quantum-cascade lasers. The terahertz source is a 10-element linear array of third-order distributed-feedback QCLs emitting at discrete frequencies from 2.08 to 2.4 THz. Emission from the array is collimated and sent through a Michelson interferometer, with the sample placed in one of the arms. Interference signals collected at each frequency are used to reconstruct an interferogram and detect the interfaces in the sample. Because of the long coherence length of the source, the interferometer arms need not be adjusted to the zero-path delay. A depth resolution of 360 μm in the dielectric is achieved with further potential improvement through improved frequency coverage of the array. The entire experiment footprint is <1 m×1 m with the source operated in a compact, closed-cycle cryocooler.  相似文献   

4.
In this paper we investigate the performance of quantum cascade (QC) lasers for high frequency modulation spectroscopy, particularly using frequency modulation (FM) and two-tone (2T) techniques. The coupling of the rf signal to the QC laser through the cryostat is studied in detail as well as the noise contributions of both the detector and the laser source to the final spectra. The experimental traces are obtained by spectroscopy on low-pressure N2O and CH4 gases at 8.0 μm and 7.3 μm wavelength, respectively, and reproduce the line profiles predicted by theory. As a preliminary result, an enhancement of a factor six is measured with respect to direct absorption line recording. PACS 42.62.Fi; 42.72.A1; 07.88.+y  相似文献   

5.
Photoacoustic spectroscopy with quantum cascade distributed-feedback lasers   总被引:1,自引:0,他引:1  
We present photoacoustic (PA) spectroscopy measurements of carbon dioxide, methanol, and ammonia. The light source for the excitation was a single-mode quantum cascade distributed-feedback laser, which was operated in pulsed mode at moderate duty cycle and slightly below room temperature. Temperature tuning resulted in a typical wavelength range of 3cm(-1)at a linewidth of 0.2cm(-1). The setup was based on a Herriott multipass arrangement around the PA cell; the cell was equipped with a radial 16-microphone array to increase sensitivity. Despite the relatively small average laser power, the ammonia detection limit was 300 parts in 10(9)by volume.  相似文献   

6.
We present simulations of mid-infrared quantum-cascade lasers (QCL) with optimized second-harmonic generation (SHG). The optimized design was obtained utilizing techniques from supersymmetric quantum mechanics with both material-dependent effective mass and band nonparabolicity. Two-photon processes are analyzed for resonant cascading triple levels designed for enhancing SHG. Nonunity pumping efficiency from one period of the QCL to the next is taken into account by including all relevant carrier scattering mechanisms between the injector/collector and active regions. Carrier transport and power output of the structure are analyzed by self-consistently solving rate equations for the carriers and photons. Current-dependent linear optical output power is derived based on the steady-state photon population in the active region. The SH power is derived from the Maxwell equations with the phase mismatch and modes overlapping included. Due to stronger coupling between lasing levels, the optimized structure has both higher linear and SH output powers. The optimized structure can be fabricated through digitally grading the submonolayer alloys by molecular beam epitaxy (MBE) technique.  相似文献   

7.
We report second-harmonic (SH) and sum-frequency generation in GaAs-based quantum-cascade lasers. A doping dependence study of the second-order susceptibility in one of the investigated structure is shown. We also demonstrate that grating-coupled surface emission is a highly efficient way to couple out the SH radiation.  相似文献   

8.
We report second-harmonic (SH) and sum-frequency generation in GaAs-based quantum-cascade lasers. A doping dependence study of the second-order susceptibility in one of the investigated structure is shown. We also demonstrate that grating-coupled surface emission is a highly efficient way to couple out the SH radiation.  相似文献   

9.
Wen Q  Michaelian KH 《Optics letters》2008,33(16):1875-1877
We describe the use of a pulsed external-cavity quantum-cascade laser (EC-QCL) for the acquisition of mid-IR photoacoustic (PA) spectra of solids. The EC-QCL employed in this work operates from 990 to 1075 cm(-1) (9.30-10.10 microm). A gas-microphone PA cell was used as the detector, and the signal was demodulated using a lock-in amplifier. PA EC-QCL spectra of solids display bands significantly narrower than those in corresponding PA Fourier transform infrared spectra.  相似文献   

10.
The first global quantum simulation of semiconductor-based quantum-cascade lasers is presented. Our three-dimensional approach allows us to study in a purely microscopic way the current-voltage characteristics of state-of-the-art unipolar nanostructures, and therefore to answer the long-standing controversial question: Is charge transport in quantum-cascade lasers mainly coherent or incoherent? Our analysis shows that (i) quantum corrections to the semiclassical scenario are minor and (ii) inclusion of carrier-phonon and carrier-carrier scattering gives excellent agreement with experimental results.  相似文献   

11.
黎华  韩英军  谭智勇  张戎  曹俊诚 《物理学报》2010,59(3):2169-2172
采用气态源分子束外延设备生长了GaAs/AlGaAs束缚态到连续态跃迁结构的太赫兹(THz)量子级联激光器(QCL)有源区结构,研究了半绝缘等离子体波导THz QCL的器件工艺,采用远红外傅里叶变换光谱仪以及探测器测量了器件的电光特性.器件激射频率为32 THz,10 K下的阈值电流密度为275 A/cm2. 关键词: 太赫兹 量子级联激光器 波导 器件工艺  相似文献   

12.
Kao TY  Hu Q  Reno JL 《Optics letters》2012,37(11):2070-2072
We report a novel laser cavity design in third-order distributed feedback (DFB) terahertz quantum-cascade lasers based on a perfectly phase-matching technique. This approach substantially increases the usable length of the third-order DFB laser and leads to narrow beam patterns. Single frequency emissions from 151 apertures (5.6 mm long device) are coherently added up to form a narrow beam with (FWHM≈6×11°) divergence. A similar device with 40 apertures shows more than 5 mW of optical power with slope efficiency ~140 mW/A at 10 K pulsed operation.  相似文献   

13.
常俊  黎华  韩英军  谭智勇  曹俊诚 《物理学报》2009,58(10):7083-7087
采用气态源分子束外延方法生长了束缚态到连续态跃迁太赫兹量子级联激光器(terahertz quantum-cascade laser,简称THz QCL)有源区结构,并且采用电化学CV仪、霍尔测试仪以及高分辨X射线衍射对材料的质量进行表征,得出THz QCL有源区具有很高的晶体质量.另外,采用蒙特卡罗方法模拟了共振声子THz QCL器件的I-V曲线,分析了在不同偏压下子能级的对齐状况和电子的输运特征. 关键词: 太赫兹 量子级联激光器 分子束外延 X射线衍射  相似文献   

14.
A photoacoustic trace-gas sensor for the measurement of nitric oxide with a detection limit of 500 parts in 10(9) has been demonstrated. The radiation source was a thermoelectrically cooled distributed-feedback quantum-cascade laser operating in pulsed mode near 5.3 microm with an average laser power of 8 mW. A resonant photoacoustic cell was excited in its first longitudinal mode by the modulated laser light. Preliminary measurements have been performed to test the performance of our photoacoustic sensor; possible improvements to reach lower detection limits are discussed.  相似文献   

15.
The main characteristics that a sensor must possess for trace gas detection and pollution monitoring are high sensitivity, high selectivity and the capability to perform in situ measurements. The photacoustic Helmholtz sensor developed in Reims, used in conjunction with powerful Quantum Cascade Lasers (QCLs), fulfils all these requirements. The best cell response is # 1200 V W−1 cm and the corresponding ultimate sensitivity is j 3.3 × 10−10 W cm−11 Hz−11/2. This efficient sensor is used with mid-infrared QCLs from Alpes Lasers to reach the strong fundamental absorption bands of some atmospheric gases. A first cryogenic QCL emitting at 7.9 μm demonstrates the detection of methane in air with a detection limit of 3 ppb. A detection limit of 20 ppb of NO in air is demonstrated using another cryogenic QCL emitting in the 5.4 μm region. Real in-situ measurements can be achieved only with room-temperature QCLs. A room-temperature QCL emitting in the 7.9 μm region demonstrates the simultaneous detection of methane and nitrous oxide in air (17 and 7 ppb detection limit, respectively). All these reliable measurements allow the estimated detection limit for various atmospheric gases using quantum cascade lasers to be obtained. Each gas absorbing in the infrared may be detected at a detection limit in the ppb or low-ppb range.  相似文献   

16.
We present efficient second-harmonic generation in state of the art GaAs-based quantum-cascade lasers with nonlinear output powers up to 100 μW. The nonlinear output was significantly improved by applying an AlGaAs waveguide structure, which guides both, the fundamental and nonlinear light. We further show the influence of the doping in the active region on the nonlinear light generation by comparing two similar structures with different doping levels. PACS 42.55.Px; 42.65.Ky; 81.05.Ea  相似文献   

17.
Williams BS  Kumar S  Hu Q  Reno JL 《Optics letters》2005,30(21):2909-2911
We report the demonstration of distributed-feedback terahertz quantum-cascade lasers based on a first-order grating fabricated via a lateral corrugation in a double-sided metal ridge waveguide. The phase of the facet reflection was precisely set by lithographically defined facets by dry etching. Single-mode emission was observed at low to moderate injection currents, although multimode emission was observed far beyond threshold owing to spatial hole burning. Finite-element simulations were used to calculate the modal and threshold characteristics for these devices, with results in good agreement with experiments.  相似文献   

18.
The opto- or photo-acoustic effect used in gas analysis has been extended to the study of solids. This technique provides a simple method for obtaining information about optical absorptions and subsequent de-excitations in solids.  相似文献   

19.
Quantum-cascade lasers operating at 4.7, 3.5, and 2.3 THz have been used to achieve cyclotron resonance in InAs and InSb quantum wells from liquid-helium temperatures to room temperature. This represents one of the first spectroscopic applications of terahertz quantum-cascade lasers. Results show that these compact lasers are convenient and reliable sources with adequate power and stability for this type of far-infrared magneto-optical study of solids. Their compactness promises interesting future applications in solid-state spectroscopy.  相似文献   

20.
太赫兹(THz)实时成像是THz技术中颇具潜力的一个领域,具有成像速度快、成像分辨率高等特点,基于THz量子级联激光器(QCL)的实时成像系统是其中最重要的一种,系统体积小、重量轻、成像信噪比高等特点使其在实际应用中具有独特的优势。本文主要介绍了THz QCL器件及其实时成像系统的研究进展,采用超半球高阻硅透镜改善了THz QCL的输出激光,实现了准高斯光束输出,搭建了基于二维摆镜消干涉技术的THz实时成像系统,单帧成像光斑面积45mm×30 mm,实现了对刀片、药片的实时成像演示,成像分辨率优于0.5 mm;最后对成像系统激光源、成像光路和探测端的改进以及成像效果的改善方面进行了综述,并探讨了THz实时成像系统未来的发展趋势及其在材料分析和生物医学成像方面的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号