首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the first diode-pumped solid-state laser operating in cw-mode-locked regime and simultaneously achieving intracavity frequency-tripling. This laser provide UV picosecond pulses (λ=355 nm) of 10 ps duration with 0.5 mW average power at 150 MHz repetition rate. A different set of adjustments gave rise to a Q-switched mode-locked regime. Trains of hundred UV pulses of 60 ps duration and 4 W peak power were produced in this latter case at 50 kHz repetition rate. Received: 12 October 1998 / Revised version: 12 December 1998 / Published online: 26 May 1999  相似文献   

2.
The ablation process of thin copper films on fused silica by picosecond laser pulses is investigated. The ablation area is characterized using optical and scanning electron microscopy. The single-shot ablation threshold fluence for 40 ps laser pulses at 1053 nm has been determinated toF thres = 172 mJ/cm2. The ablation rate per pulse is measured as a function of intensity in the range of 5 × 109 to 2 × 1011 W/cm2 and changes from 80 to 250 nm with increasing intensity. The experimental ablation rate per pulse is compared to heat-flow calculations based on the two-temperature model for ultrafast laser heating. Possible applications of picosecond laser radiation for microstructuring of different materials are discussed.  相似文献   

3.
The dependence of the ablation rate of aluminium on the fluence of nanosecond laser pulses with wavelengths of 532 nm and respectively 1064 nm is investigated in atmospheric air. The fluence of the pulses is varied by changing the diameter of the irradiated area at the target surface, and the wavelength is varied by using the fundamental and the second harmonic of a Q-switched Nd-YAG laser system. The results indicate an approximately logarithmic increase of the ablation rate with the fluence for ablation rates smaller than ∼6 μm/pulse at 532 nm, and 0.3 μm/pulse at 1064 nm wavelength. The significantly smaller ablation rate at 1064 nm is due to the small optical absorptivity, the strong oxidation of the aluminium target, and to the strong attenuation of the pulses into the plasma plume at this wavelength. A jump of the ablation rate is observed at the fluence threshold value, which is ∼50 J/cm2 for the second harmonic, and ∼15 J/cm2 for the fundamental pulses. Further increasing the fluence leads to a steep increase of the ablation rate at both wavelengths, the increase of the ablation rate being approximately exponential in the case of visible pulses. The jump of the ablation rate at the threshold fluence value is due to the transition from a normal vaporization regime to a phase explosion regime, and to the change of the dimensionality of the hydrodynamics of the plasma-plume.   相似文献   

4.
Non-thermal and thermal processes due to femtosecond laser ablation of aluminum (Al) at low, moderate, and high-fluence regimes are identified by Atomic Force Microscope (AFM) surface topography investigations. For this purpose, surface modifications of Al by employing 25 fs Ti: sapphire laser pulses at the central wavelength of 800 nm have been performed to explore different nano- and microscale features such as hillocks, bumps, pores, and craters. The mechanism for the formation of these diverse kinds of structures is discussed in the scenario of three ablation regimes. Ultrafast electronic and non-thermal processes are dominant in the lower fluence regime, whereas slow thermal processes are dominant at the higher fluence regime. Therefore, by starting from the ablation threshold three different fluence regimes have been chosen: a lower fluence regime (0.06–0.5 J cm?2 single-shot irradiation under ultrahigh vacuum condition and 0.25–2.5 J cm?2 single-shot irradiation in ambient condition), a moderate-fluence regime (0.25–1.5 J cm?2 multiple-shot irradiation), and a high-fluence regime 2.5–3.5 J cm?2 multiple-shot irradiation. For the lower fluence (gentle ablation) regime, around the ablation threshold, the unique appearance of individual, localized Nano hillocks typically a few nanometers in height and less than 100 nm in diameter are identified. These Nano hillock-like features can be regarded as a nonthermal, electronically induced phase transition process due to localized energy deposition as a result of Coulomb explosion or field ion emission by surface optical rectification. At a moderate-fluence regime, slightly higher than ablation threshold multiple-pulse irradiation produces bump-formation and is attributed to ultrafast melting (plasma formation). The high-fluence regime results in greater rates of material removal with highly disturbed and chaotic surface of Al with an appearance of larger protrusions at laser fluence well above the ablation threshold. These nonsymmetrical shapes due to inhomogeneous nucleation, cluster formation, and resolidification of a metallic surface after melting are attributable to slow thermal processes (ps time scale).  相似文献   

5.
Fang HH  Ding R  Lu SY  Wang L  Feng J  Chen QD  Sun HB 《Optics letters》2012,37(4):686-688
Two-beam interference ablation of 1,4-Bis(4-methylstyryl)benzene organic crystal by short laser pulses (10 ns, 355 nm) is presented. The influence of laser fluence, interference period, and pulse number on the morphology have been studied. The morphology is closely associated with the molecular interactions in the crystals, and it could be well controlled by adjusting the laser fluence and pulses number. Through interference ablating the crystals with high fluence pulses, and then treated with low fluence laser pulses, grating structures with smooth surface could be fabricated without any additional process.  相似文献   

6.
The results of patterning of the indium-tin oxide (ITO) film on the glass substrate with high repetition rate picosecond lasers at various wavelengths are presented. Laser radiation initiated the ablation of the material, forming grooves in ITO. Profile of the grooves was analyzed with a phase contrast optical microscope, a stylus type profiler, scanning electron microscope (SEM) and atomic force microscope (AFM). Clean removal of the ITO film was achieved with the 266 nm radiation when laser fluence was above the threshold at 0.20 J/cm2, while for the 355 nm radiation, the threshold was higher, above 0.46 J/cm2. The glass substrate was damaged in the area where the fluence was higher than 1.55 J/cm2. The 532 nm radiation allowed getting well defined grooves, but a lot of residues in the form of dust were generated on the surface. UV radiation with the 266 nm wavelength provided the widest working window for ITO ablation without damage of the substrate. Use of UV laser radiation with fluences close to the ablation threshold made it possible to minimize surface contamination and the recast ridge formation during the process.  相似文献   

7.
We demonstrate a new kind of picosecond laser source in the UV at a high repetition rate of -45 kHz , using only passive, compact, and simple elements. This system is based on a microchip laser and a very efficient multipass amplifier, both pumped with recently developed high-brightness laser diodes. The system has been optimized to deliver, at a high repetition rate, subnanosecond pulses at the wavelength 355 nm with an energy per pulse of close to 1 muJ (38-mW average power). This source is to our knowledge the first totally passive 300-ps UV laser source at this high repetition rate.  相似文献   

8.
Silver colloids in aqueous solution were studied by different scanning microscopy techniques and UV/VIS spectroscopy. The silver colloids were produced either by chemical reduction or by nanosecond laser ablation from a solid silver foil in water. Variation of laser power and ablation time leads to solutions of metal clusters of different sizes in water. We characterized the electronic absorption of the clusters by UV/VIS spectroscopy. STM (scanning tunneling microscope) imaging of the metal colloids shows atomic resolution of rod- or tenon-like silver clusters up to 10-nm length formed by laser ablation. Our scanning electron microscope measurements, however, show that much larger silver colloids up to 5-μm length are also formed, which are not visible in the STM due to their roughness. We correlate them with the long-wavelength tail of the multimodal UV/VIS spectrum. The silver colloids obtained by chemical reduction are generally larger and their electronic spectra are red-shifted compared to the laser-ablated clusters. Irradiation of the colloid solution with nanosecond laser pulses of appropriate fluence at 532 nm and 355 nm initially reduced the colloid size. Longer irradiation at 355 nm, however, leads to the formation of larger colloids again. There seems to be a critical lower particle size, where silver clusters in aqueous solution become unstable and start to coagulate. Received: 24 June 2002 / Revised version: 25 July 2002 / Published online: 25 October 2002 RID="*" ID="*"This work is part of the thesis of H. M?ltgen RID="**" ID="**"Corresponding author. Fax: +49-211/811-5195, E-mail: kleinermanns@uni-duesseldorf.de  相似文献   

9.
The ablation of graphite is studied as a function of laser fluence for 355, 532 and 1,064 nm wavelength generated by a nanosecond Nd:YAG laser. It has been found that in the case of lower wavelengths, the transition from the thermal ablation to the phase explosion takes place at lower laser fluences. The change of crater shape due to the effect of deep drilling in the proximity of the phase explosion threshold was observed. The calculations of plasma radiation flux to the target surface were made, and the considerable increase of absorbed energy density was found in the case of 355 nm wavelength.  相似文献   

10.
We report on recent insights into the interaction between ultra-fast laser pulses and plasmonic nanoparticles. We discuss femtosecond near-field ablation as a simple but versatile tool for the nanoscale modification of surfaces and the high-resolution measurement of a nanostructure’s near field. Two model systems are presented, illustrating the complexity of near-field distributions. Furthermore, finite difference time domain calculations in combination with absorption spectra provide a deeper insight into the factors influencing the near-field distribution. For the first time, an almost perfect agreement between the measured ablation pattern and experiment has been reached for gold triangles with a side length around 500 nm. Additionally, the results from picosecond laser irradiated plasmonic structures display a new regime of nanoscale laser material processing. We present first results showing nanometre confined melting induced by laser pulses.  相似文献   

11.
Laser-induced backside wet etching (LIBWE) is a promising process for microstructuring of rigid chemical resistant and inert transparent materials. LIBWE with nanosecond laser pulses has been successfully demonstrated in a number of studies. LIBWE in a time scale of femtosecond and picosecond pulse durations has been investigated only in a few studies and just on fused silica. In the present study LIBWE of fluorides (CaF2, MgF2) and sapphire with a mode-locked picosecond (t p=10 ps) laser at a UV wavelength of λ=355 nm using toluene as absorbing liquid has been demonstrated. The influence of the laser fluence and the pulse number on the etching rate and the achieved surface morphology was investigated. The etching rate grows linearly with the laser fluence in the low and high-fluence ranges with different slopes. The achieved etching rates for CaF2 and for sapphire were in the same range. Contrary to CaF2 and sapphire the etching rates of MgF2 were one magnitude less. For backside etching on sapphire at high fluences smooth surfaces and at low fluences ripples pattern were found, whereas fluoride surfaces showed a trend towards crack formation.  相似文献   

12.
Single-shot ablation threshold for thin chromium film was studied using 266 nm, femtosecond laser pulses. Chromium is a useful material in the nanotechnology industry and information on ablation threshold using UV femtosecond pulses would help in precise micromachining of the material. The ablation threshold was determined by measuring the ablation crater diameters as a function of incident laser pulse energy. Absorption of 266 nm light on the chromium film was also measured under our experimental conditions, and the absorbed energy single-shot ablation threshold fluence was \(46 \pm 5\)  mJ/cm2. The experimental ablation threshold fluence value was compared to time-dependent heat flow calculations based on the two temperature model for ultrafast laser pulses. The model predicts a value of 31.6 mJ/cm2 which is qualitatively consistent with the experimentally obtained value, given the simplicity of the model.  相似文献   

13.
Negres RA  DeMange P  Demos SG 《Optics letters》2005,30(20):2766-2768
Laser annealing via preexposure to laser pulses at sub-damage-threshold fluences is known to improve the resistance of KDP crystals to laser-induced damage. Using a specific damage-testing method, we investigate the laser annealing process as a function of fluence and number of preexposure pulses (at 355 nm, 2.5 ns). Our aim is to reveal the key laser parameters in order to devise a practical and efficient protocol for optimizing performance of the material for operation in laser systems in the near UV. Results suggest that a near twofold improvement to the laser-damage performance can be achieved with a limited number of preexposure pulses.  相似文献   

14.
The laser-induced backside wet etching (LIBWE) is an advanced laser processing method used for structuring transparent materials. LIBWE with nanosecond laser pulses has been successfully demonstrated for various materials, e.g. oxides (fused silica, sapphire) or fluorides (CaF2, MgF2), and applied for the fabrication of microstructures. In the present study, LIBWE of fused silica with mode-locked picosecond (tp = 10 ps) lasers at UV wavelengths (λ1 = 355 nm and λ2 = 266 nm) using a (pyrene) toluene solution was demonstrated for the first time. The influence of the experimental parameters, such as laser fluence, pulse number, and absorbing liquid, on the etch rate and the resulting surface morphology were investigated. The etch rate grew linearly with the laser fluence in the low and in the high fluence range with different slopes. Incubation at low pulse numbers as well as a nearly constant etch rate after a specific pulse number for example were observed. Additionally, the etch rate depended on the absorbing liquid used; whereas the higher absorption of the admixture of pyrene in the used toluene enhances the etch rate and decreases the threshold fluence. With a λ1 = 266 nm laser set-up, an exceptionally smooth surface in the etch pits was achieved. For both wavelengths (λ1 = 266 nm and λ2 = 355 nm), LIPSS (laser-induced periodic surface structures) formation was observed, especially at laser fluences near the thresholds of 170 and 120 mJ/cm2, respectively.  相似文献   

15.
We report on a comprehensive study of picosecond laser scribing of gallium doped zinc oxide (GZO) thin films deposited on glass substrates using 355 nm, 532 nm and 1064 nm radiation, respectively. In this study, we investigated the influence of front side and rear side irradiation and determined single pulse ablation thresholds for all three wavelengths. Good ablation quality with full electrical isolation, steep groove walls and a smooth groove bottom was achieved by 355 nm rear side processing with a scanning speed of 224 mm/s. Ridges at the groove rims were found to be between 15 nm and 45 nm high. At similar scanning speed, laser scribing using 532 nm and 1064 nm radiation resulted in a lower ablation quality due to a higher roughness of the groove bottoms or higher ridges at the groove rims.  相似文献   

16.
The deposition rate for laser ablated metals has been studied in a standard geometry for fluences up to 20J/cm2. The rate for silver and nickel is a few percent of a monolayer per pulse at the laser wavelengths 532 nm and 355 nm. The rate for nickel is significantly higher than that for silver at 532 nm, whereas the rate for the two metals is similar at 355 nm. This behaviour disagrees with calculations based on the thermal properties at low intensities as well as predictions based on formation of an absorbing plasma at high intensities. The deposition rate falls strongly with increasing pressure of the ambient gases, nitrogen and argon.  相似文献   

17.
Ultra-fast electronic and thermal processes for the energy deposition mechanism during femtosecond laser ablation of Si have been identified by means of atomic force microscopy and Raman scattering techniques. For this purpose, Si targets were exposed with 800-nm, 25-fs Ti:sapphire laser pulses for different laser fluencies in air and under UHV (ultra high vacuum) conditions. Various nano- and microstructures on the surface of the irradiated samples are revealed by a detailed surface topography analysis. Ultra-fast electronic processes are dominant in the lower-fluence regime. Therefore, by starting from the ablation threshold three different fluence regimes have been chosen: a lower-fluence regime (0.06–0.5 J?cm?2 single-shot irradiation under UHV condition and 0.25–2.5 J?cm?2 single-shot irradiation in ambient condition), a moderate-fluence regime (0.25–1.5 J?cm?2 multiple-shot irradiation), and a higher-fluence regime (2.5–3.5 J?cm?2 multiple-shot irradiation). Around the ablation threshold fluence, most significant features identified at the Si surface are nanohillock-like structures. The appearance of these nanohillocks is regarded as typical features for fast electronic processes (correlated with existence of hot electrons) and is explained on the basis of Coulomb explosion. The growth of these typical features (nanohillocks) by femtosecond laser irradiation is an element of novelty. At moderate irradiation fluence, a ring-shaped ablation with larger bumps and periodic surface structures is observed and is considered as a footprint of ultra-fast melting. Further increase in the laser fluence, i.e. a higher-fluence regime, resulted in strong enhancement of the thermal process with the appearance of larger islands. The change in surface topography provides an innovative clue to differentiate between ultra-fast electronic processes, i.e. Coulomb explosion (sub-100 fs) at a lower-fluence regime and ultra-fast melting (hundreds of fs) at a moderate-fluence regime, and slow thermal processes (ps time scale) at a higher-fluence regime. These fast electronic and thermal processes are well correlated to structural and crystallographic alterations, inferred from Raman spectroscopy.  相似文献   

18.
The ablation rate when drilling fine holes having large aspect ratios in silicon substrates with femtosecond laser pulses was estimated from mechanically ground cross sections of the ablated holes. The ablation rate shows a dramatic change at the depth at which the laser pulse reaches a certain fluence, which is nearly constant when the initial laser fluence was varied from 14.5 to 59.4 J/cm2. The ablation rate, threshold fluence, in three fluence domains, and the transition fluences at which the ablation rate shows a dramatic change, were derived. However, when a pulse energy of 200 μJ was used a much greater ablation rate was obtained, suggesting that another fluence domain for larger ablation rates exists. The experimentally obtained hole depths as a function of shot numbers were reproduced by a theoretical model, which incorporates laser pulse attenuation in the holes that is the same as that in waveguides for some attenuation coefficient and ablation rates for three fluence domains. PACS 42.62.-b; 42.65.Re; 78.40.Fy; 78.47.+p; 81.20.Wk  相似文献   

19.
The incubation process in polyimid was investigated at 337.1 nm UV photoablation. The threshold number of incubation pulses needed to start the ablation is proportional to a reciprocal cubic function of the fluence and does not depend on the repetition rate of the laser between 0 and 20 pps. A simple model is presented to explain these characteristics.  相似文献   

20.
Laser ablation with femtosecond pulses (130 fs, wavelength 800 nm, repetition rate 2 Hz) was compared with nanosecond-pulse ablation (10 ns, wavelength 266 nm, repetition rate 2.5 Hz) of bariumalumoborosilicate glass in air using the direct focusing technique. Different ablation thresholds and heat-affected zones were observed. The lateral and vertical machining precision was evaluated. Single nanosecond laser pulses in the far UV resulted in a bubble or a circular hole in the centre of the illuminated spot, depending on the applied fluence. The ablation behaviour in the case of near-IR femtosecond pulses contrasted to this. Bubble formation was not detected. It needed repeated pulses at the same spot to modify the surface until material removal could be observed (incubation). Cavity dimensions of less than the beam diameter were achieved in this case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号