首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Lithium complexes were prepared with phenylphosphinic and phenylphosphonic acids. The complexes were studied in the solid state using Fourier transform infrared spectroscopy spectroscopy and in solution (methanol) using 1H, 13C, and 31P Nuclear magnetic resonance spectroscopy (NMR) spectroscopy; the most preferred structures of the complexes were determined by density functional theory (DFT) computational method. Although methanol has a strong solvation effect on lithium ions and ligands, which causes dissociation of the complexes, significant changes of the NMR spectra of the complexes (relative to those of the free ligands) were observed. The new spectroscopic results indicate the presence of the phenylphosphinic acid tautomer (I: C6H5PH(?O)OH) rather than that of phenyl-phosphorous acid (II: C6H5P(OH)2) in deuterated methanol showing PH/PD exchange. On the other hand, tautomer I predominates in the complex with lithium without showing PH/PD exchange. The DFT calculations predict that tautomer I is the preferred structure in the case of free ligand and lithium complex. The absence of a PH/PD exchange in the complex is due to the formation of a chelating complex, rather than of a simple salt between lithium ion and the two oxygen atoms of I, which prevent tautomerization of I into II. DFT calculations support the formation of lithium chelating complexes. The lithium ion was found to affect the spectroscopic properties of phenylphosphinic acid more dramatically than those of phenylphosphonic acid.  相似文献   

2.
The solvation structure of the lithium ion in room-temperature ionic liquids 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide (EMI(+)TFSI(-)) and N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (BMP(+0TFSI(-)) has been studied by Raman spectroscopy and DFT calculations. Raman spectra of EMI(+)TFSI(-) and BMP(+)TFSI(-) containing Li(+)TFSI(-) over the range 0.144-0.589 and 0.076-0.633 mol dm(-3), respectively, were measured at 298 K. A strong 744 cm-1 band of the free TFSI(-) ion in the bulk weakens with increasing concentration of the lithium ion, and it revealed by analyzing the intensity decrease that the two TFSI(-) ions bind to the metal ion. The lithium ion may be four-coordinated through the O atoms of two bidentate TFSI(-) ions. It has been established in our previous work that the TFSI(-) ion involves two conformers of C(1) (cis) and C(2) (trans) symmetries in equilibrium, and the dipole moment of the C(1) conformer is significantly larger than that of the C(2) conformer. On the basis of these facts, the geometries and SCF energies of possible solvate ion clusters [Li(C(1)-TFSI(-))(2)](-), [Li(C(1)-TFSI(-))(C(2)-TFSI(-))](-), and [Li(C(2)-TFSI(-))(2)](-) were examined using the theoretical DFT calculations. It is concluded that the C(1) conformer is more preferred to the C(2) conformer in the vicinity of the lithium ion.  相似文献   

3.
A systematic study of cation-pi interactions between alkali metal ions and the cyclopentadienyl ring of ferrocene is presented. The alkali metal (Li+, Na+, K+, Rb+, Cs+) salts of the ditopic mono(pyrazol-1-yl)borate ligand [1,1'-fc(BMe2pz)2]2- crystallize from dimethoxyethane as multiple-decker sandwich complexes with the M+ ions bound to the pi faces of the ferrocene cyclopentadienyl rings in an eta5 manner (fc = (C5H4)2Fe; pz = pyrazolyl). X-ray crystallography of the lithium complex reveals discrete trimetallic entities with each lithium ion being coordinated by only one cyclopentadienyl ring. The sodium salt forms polyanionic zigzag chains where each Na+ ion bridges the cyclopentadienyl rings of two ferrocene moieties. Linear columns [-CpR-Fe-CpR-M+-CpR-Fe-CpR-M+-](infinity) (R = [-BMe2pz]-) are established by the K+, Rb+, and Cs+ derivatives in the solid state. According to DFT calculations, the binding enthalpies of M+-eta5(ferrocene) model complexes are about 20% higher as compared to the corresponding M+-eta6(benzene) aggregates when M+ = Li+ or Na+. For K+ and Rb+, the degree of cation-pi interaction with both aromatics is about the same. The binding sequence along the M+-eta5(ferrocene) series follows a classical electrostatic trend with the smaller ions being more tightly bound.  相似文献   

4.
Structures and binding thermochemistry are investigated for protonated PhePhe and for complexes of PhePhe with the alkaline-earth ions Ba(2+) and Ca(2+), the alkali-metal ions Li(+), Na(+), K(+), and Cs(+), and the transition-metal ion Ag(+). The two neighboring aromatic side chains open the possibility of a novel encapsulation motif of the metal ion in a double cation-π configuration, which is found to be realized for the alkaline-earth complexes and, in a variant form, for the Ag(+) complex. Experimentally, complexes are formed by electrospray ionization, trapped in an FT-ICR mass spectrometer, and characterized by infrared multiple photon dissociation (IRMPD) spectroscopy using the free electron laser FELIX. Interpretation is assisted by thermochemical and IR spectral calculations using density functional theory (DFT). The IRMPD spectrum of protonated PhePhe is reproduced with good fidelity by the calculated spectrum of the most stable conformation, although the additional presence of the secondmost stable conformation is not excluded. All metal-ion complexes have charge-solvated binding modes, with zwitterion (salt bridge) forms being much less stable. The amide oxygen always coordinates to the metal ion, as well as at least one phenyl ring (cation-π interaction). At least one additional chelation site is always occupied, which may be either the amino nitrogen or the carboxy carbonyl oxygen. The alkaline-earth complexes prefer a highly compact caged structure with both phenyl rings providing cation-π stabilization in a "sandwich" configuration (OORR chelation). The alkali-metal complexes prefer open-cage structures with only one cation-π interaction, except perhaps Cs(+). The Ag(+) complex shows a unique preference for the closed-cage amino-bound NORR structure. Ligand-driven perturbations of normal-mode frequencies are generally found to correlate linearly with metal-ion binding energy.  相似文献   

5.
Accurate calculations of electrostatic potentials and treatment of substrate polarizability are critical for predicting the permeation of ions inside water-filled nanopores. The ab initio molecular dynamics method, based on density functional theory (DFT), accounts for the polarizability of materials, water, and solutes, and it should be the method of choice for predicting accurate electrostatic energies of ions. In practice, DFT coupled with the use of periodic boundary conditions in a charged system leads to large energy shifts. Results obtained using different DFT packages may vary because of the way pseudopotentials and long-range electrostatics are implemented. Using maximally localized Wannier functions, we apply robust corrections that yield relatively unambiguous ion energies in select molecular and aqueous systems and inside carbon nanotubes. Large binding energies are predicted for ions in metallic carbon nanotube arrays, while Na+ and Cl- energies are found to exhibit asymmetry in water that is smaller than but comparable with those computed using nonpolarizable water force fields.  相似文献   

6.
Cationic metal ion-coordinated N-diisopropyloxyphosphoryl dipeptides (DIPP-dipeptides) were analyzed by electrospray ionization multistage tandem mass spectrometry (ESI-MS n ). Two novel rearrangement reactions with hydroxyl oxygen or carbonyl oxygen migrations were observed in ESI-MS/MS of the metallic adducts of DIPP-dipeptides, but not for the corresponding protonated DIPP-dipeptides. The possible oxygen migration mechanisms were elucidated through a combination of MS/MS experiments, isotope (18O, 15N, and 2H) labeling, accurate mass measurements, and density functional theory (DFT) calculations at the B3LYP/6-31 G(d) level. It was found that lithium and sodium cations catalyze the carbonyl oxygen migration more efficiently than does potassium and participation through a cyclic phosphoryl intermediate. In addition, dipeptides having a C-terminal hydroxyl or aromatic amino acid residue show a more favorable rearrangement through carbonyl oxygen migration, which may be due to metal cation stabilization by the donation of lone pair of the hydroxyl oxygen or aromatic π-electrons of the C-terminal amino acid residue, respectively. It was further shown that the metal ions, namely lithium, sodium, and potassium cations, could play a novel directing role for the migration of hydroxyl or carbonyl oxygen in the gas phase. This discovery suggests that interactions between phosphorylated biomolecules and proteins might involve the assistance of metal ions to coordinate the phosphoryl oxygen and protein side chains to achieve molecular recognition.  相似文献   

7.
An explanation for the superior proton conductivity of low equivalent weight (EW) short-side-chain (SSC) perfluorosulfonic acid membranes is pursued through the determination of hydrated morphology and hydronium ion diffusion coefficients using classical molecular dynamics (MD) simulations. A unique force field set for the SSC ionomer was derived from torsion profiles determined from ab initio electronic structure calculations of an oligomeric fragment consisting of two side chains. MD simulations were performed on a system consisting of a single macromolecule of the polymer (EW of 580) with the general formula F3C-[CF(OCF2CF2SO3H)-(CF2)7]40-CF3 at hydration levels corresponding to 3, 6, and 13 water molecules per sulfonic acid group. Examination of the hydrated morphology indicates the formation of hydrogen bond "bridges" between distant sulfonate groups without significant bending of the polytetrafluoroethylene backbone. Pair correlation functions of the system identify the presence of ion cages consisting of hydronium ions hydrogen-bonded to three sulfonate groups at the lowest water content. Such structures exhibit very low S-OH3+ separations, well below 4 A and severely inhibit vehicular diffusion of the protons. The number of sulfonate groups in the first solvation shell of a given hydronium ion correlates well with the differences between Nafion and the SSC polymer (Hyflon). The calculated hydronium ion diffusion coefficients of 2.84 x 10-7, 1.36 x 10-6, and 3.47 x 10-6 cm2/s for water contents of 3, 6, and 13, respectively, show only good agreement to experimentally measured values at the lowest water content, underscoring the increasing contribution of proton shuttling or hopping at the higher hydration levels. At the highest water content, the vehicular diffusion accounts for only about 1/5 of the total proton transport similar to that observed in Nafion.  相似文献   

8.
Interaction energies of increasingly methylated ammonium ions with aromatics (benzene, phenol, indole) and with acetate were calculated in vacuo and under the influence of polar media in order to model the binding of ammonium group containing ligands to receptors that offer either carboxylic or aromatic amino acid side chains as ligand anchoring alternatives. Semiempirical, ab-initio and DFT methods were applied to in vacuo calculations while the latter was used at the B3LYP6-31G(d) level in connection with the SCRF procedure of Miertu et al. [Chem. Phys. 55 (1981) 117] to simulate the free energies of transfer from the aqueous (=78.3) to the proteinaceous medium (=20). The in vacuo absolute interaction energies decrease with increasing methylation but the opposite becomes true under the influence of SCRF; only in the example of the tetramethylammonium ion the free energy stays negative. Concerning the interaction of the latter with acetate, it is only slightly more favourable than the binding of tetramethylammonium to indole. This result indicates that aromatic side chains are thermodynamically comparable to the carboxylic ones in the recognition process of the respective receptors for acetylcholine type ligands.  相似文献   

9.
Electrospray ionization (ESI) of solutions containing adenine and AgNO(3) yields polymeric [Ad(x)+ Ag(y)-zH]((y-z)+) species. Density functional theory (DFT) calculations have been used to examine potential structures for several of the smaller ions while multistage mass spectrometry experiments have been used to probe their unimolecular reactivity (via collision-induced dissociation (CID)) and bimolecular reactivity (via ion-molecule reactions with the neutral reagents acetonitrile, methanol, butylamine and pyridine). DFT calculations of neutral adenine tautomers and their silver ion adducts provide insights into the binding modes of adenine. We find that the most stable [Ad + Ag](+) ion does not correspond to the most stable neutral adenine tautomer, consistent with previous studies that have shown that transition metal ions can stabilize rare tautomeric forms of nucleobases. Both the charge and the stoichiometry of the [Ad(x)+ Ag(y)-zH]((y-z)+) complexes play pivotal roles in directing the types of fragmentation and ion-molecule reactions observed. Thus, [Ad(2)+ Ag(2)](2+) is observed to dissociate to [Ad + Ag](+) and to react with butylamine via proton transfer, while [Ad(2)+ Ag(2)- H](+) fragments via loss of neutral adenine to form the [Ad + Ag(2)- H](+) ion and does not undergo proton transfer to butylamine. DFT calculations on several isomeric [Ad(2)+ Ag(2)](2+) ions suggest that planar centrosymmetric cations, in which two adjacent silver atoms are bridged by two N7H adenine tautomers via N(3),N(9)-bidentate interactions, are the most stable. The [Ad + Ag(2)-H](+) ion adds two neutral reagents in ion-molecule reactions, consistent with the presence of two vacant coordination sites. It undergoes a silver atom loss to form the [Ad + Ag - H](+) radical cation, which in turn fragments quite differently to the even electron [Ad + Ag](+) ion. Several other pairs of radical cation/even electron adenine-silver complexes were also found to undergo different fragmentation reactions.  相似文献   

10.
Density-functional theory (DFT) and ab initio (QCISD and CBS-RAD) calculations suggest that complexation of "naked" lithium cations to olefins favors the addition of alkyl radicals to the double bond over abstraction of an allyllic hydrogen atom. Thus, "naked" lithium cations in nonpolar solvents can catalyze the radical polymerization of olefins by favoring the chain-lengthening reaction over the competing hydrogen-atom extraction, which is competitive in the absence of metal ions. One putative initiation reaction, addition of triplet dioxygen to the double bond, is thermoneutral and has a very low barrier when the oxygen molecule is complexed to a lithium cation. An alternative process, abstraction of an allyllic hydrogen atom to generate the allyl and hydroperoxy radicals, is also strongly favored by complexation of the oxygen to the lithium cation but is less favorable than addition. These results support Michl's recent interpretation of experimentally observed alkene polymerization in the presence of lithium salts of hydrophobic carborane anions.  相似文献   

11.
ABSTRACT

It was found that the O-hexyl-(N, N-di-2-ethylhexyl)methylphosphonic acid is a good membrane carrier for lithium ion. Thus, the O-hexyl-(N, N-di-2-ethylhexyl) methylphosphonic acid exhibits a sufficiently high ability to transfer lithium and sodium ions through the liquid membrane, and also exhibits high selectivity for lithium ions.  相似文献   

12.
The alluaudite lithiated phases Li(0.5)Na(0.5)MnFe(2)(PO(4))(3) and Li(0.75)Na(0.25)MnFe(2)(PO(4))(3) were prepared via a sol-gel synthesis, leading to powders with spongy characteristics. The Rietveld refinement of the X-ray and neutron diffraction data coupled with ab initio calculations allowed us for the first time to accurately localize the lithium ions in the alluaudite structure. Actually, the lithium ions are localized in the A(1) and A(1)' sites of the tunnel. M?ssbauer measurements showed the presence of some Fe(2+) that decreased with increasing Li content. Neutron diffraction revealed the presence of a partial Mn/Fe exchange between the two transition metal sites that shows clearly that the oxidation state of the element is fixed by the type of occupied site. The electrochemical properties of the two phases were studied as positive electrodes in lithium batteries in the 4.5-1.5 V potential window, but they exhibit smaller electrochemical reversible capacity compared with the non-lithiated NaMnFe(2)(PO(4))(3). The possibility of Na(+)/Li(+) ion deintercalation from (Na,Li)MnFe(2)(PO(4))(3) was also investigated by DFT+U calculations.  相似文献   

13.
In this study, classic molecular dynamics (MD) simulations followed by density functional theory (DFT) calculations are employed to calculate the proton transfer reaction enthalpy shifts for native and derivatized peptide ions in the MALDI plume. First, absolute protonation and deprotonation enthalpies are calculated for native peptides (RPPGF and AFLDASR), the corresponding hexyl esters and three common matrices α-cyano-4-hydroxycinnamic acid (4HCCA), 2,5-dihydroxybenzoic acid (DHB), and 6 aza-2-thiothymine (ATT). From the proton exchange reaction calculations, protonation and deprotonation of the neutral peptides are thermodynamically favorable in the gas phase as long as the corresponding protonated/deprotonated matrix ions are present in the plume. Moreover, the gain in proton affinity shown by the ester ions suggests that the increase in ion yield is likely to be related to an easier proton transfer from the matrix to the peptide.  相似文献   

14.
The interaction of the cyclic nonapeptide oxytocin (OT) with a number of alkaline earth and divalent transition metal ions (X(2+)) was examined employing mass spectrometry (MS) and ion mobility spectrometry (IMS) techniques in combination with molecular dynamics (MD) and density functional theory (DFT) calculations. Under acidic conditions it was found that OT exhibits an exceptionally strong affinity for all divalent metal ions resulting in strong [OT + X](2+) peaks in the mass spectrum. Under basic conditions only Cu(2+) and Ni(2+)-OT complexes were detected and these were singly, doubly, triply, or quadruply deprotonated. Collision-induced dissociation of the [OT - 3H + Cu](-) complex yielded exclusively C-terminal Cu(2+)-containing fragments (Cu(2+)fragment(3-)), suggesting that the Cu(2+) ligation site includes deprotonated C-terminal backbone amide nitrogen atoms and the N-terminal amino nitrogen atom in [OT - 3H + Cu](-). MD and DFT calculations indicate a square-planar complex is consistent with these observations and with experimental collision cross sections. MD and DFT calculations also indicate either an octahedral or trigonal-bipyramidal complex between Zn(2+) and OT is lowest in energy with carbonyl oxygens being the primary ligation sites. Both complexes yield cross sections in agreement with experiment. The biological impact of the structural changes induced in OT by divalent metal ion coodination is discussed.  相似文献   

15.
We have used attenuated total reflection infrared (ATR-IR) spectroscopy to study the model compound perfluoro(2-ethoxyethane) sulfonic acid (PES) and the spectral changes induced by humidity variations to improve understanding of the IR spectrum of Nafion. This work was supported by density functional theory (DFT) calculations of the PES molecule and ion complexes to confirm assignments and determine local modes that contributed to specific absorptions in the IR spectrum. The work illustrates the difficulties of interpreting the spectrum of Nafion with several mixed modes being present. However, the loss of degeneracy in the -SO3- asymmetric stretching mode is clearly observed in difference spectra, and the use of DFT calculations provides an insight into changes induced by the variation in humidity.  相似文献   

16.
A comparative analysis of 6,7Li NMR spectra is performed for the samples of monoclinic lithium titanate obtained at different synthesis temperatures. In the 7Li NMR spectra three lines are found, which differ in quadrupole splitting frequencies v Q and according to ab initio EFG calculations are assigned to three crystallographic sites of lithium: Li1 (v Q ~ 27 kHz); Li2 (v Q ~ 59 kHz); Li3 (v Q ~ 6 kHz). The dynamics of lithium ions is studied in a wide temperature range from 300 K to 900 K. It is found that the narrowing of 7Li NMR spectra as a result of thermally activated diffusion of lithium ions in the low-temperature Li2TiO3 sample is observed at a higher temperature in comparison with a sample of high-temperature lithium titanate. Based on the analysis of 6Li NMR spectra it is assumed that there is mixed occupancy of lithium and titanium sites in the corresponding layers of the crystal structure of low-temperature lithium titanate, which hinders lithium ion transfer over regular crystallographic sites.  相似文献   

17.
Hybrid quantum mechanical/molecular mechanical (QM/MM) methods and density functional theory (DFT) were used to investigate the initial ring-opening step in the hydrolysis of moxalactam catalyzed by the dizinc L1 beta-lactamase from Stenotrophomonas maltophilia. Anchored at the enzyme active site via direct metal binding as suggested by a recent X-ray structure of an enzyme-product complex (Spencer, J.; et al. J. Am. Chem. Soc. 2005, 127, 14439), the substrate is well aligned with the nucleophilic hydroxide that bridges the two zinc ions. Both QM/MM and DFT results indicate that the addition of the hydroxide nucleophile to the carbonyl carbon in the substrate lactam ring leads to a metastable intermediate via a dominant nucleophilic addition barrier. The potential of mean force obtained by SCC-DFTB/MM simulations and corrected by DFT/MM calculations yields a reaction free energy barrier of 23.5 kcal/mol, in reasonable agreement with the experimental value of 18.5 kcal/mol derived from kcat of 0.15 s(-1). It is further shown that zinc-bound Asp120 plays an important role in aligning the nucleophile, but accepts the hydroxide proton only after the nucleophilic addition. The two zinc ions are found to participate intimately in the catalysis, consistent with the proposed mechanism. In particular, the Zn(1) ion is likely to serve as an "oxyanion hole" in stabilizing the carbonyl oxygen, while the Zn(2) ion acts as an electrophilic catalyst to stabilize the anionic nitrogen leaving group.  相似文献   

18.
Nuclear magnetic resonance spectroscopy has been utilized to investigate the dynamics of poly(ethylene oxide)-based lithium sulfonate ionomer samples that have low glass transition temperatures. (1)H and (7)Li spin-lattice relaxation times (T(1)) of the bulk polymer and lithium ions, respectively, were measured and analyzed in samples with a range of ion contents. The temperature dependence of T(1) values along with the presence of minima in T(1) as a function of temperature enabled correlation times and activation energies to be obtained for both the segmental motion of the polymer backbone and the hopping motion of lithium cations. Similar activation energies for motion of both the polymer and lithium ions in the samples with lower ion content indicate that the polymer segmental motion and lithium ion hopping motion are correlated in these samples, even though lithium hopping is about ten times slower than the segmental motion. A divergent trend is observed for correlation times and activation energies of the highest ion content sample with 100% lithium sulfonation due to the presence of ionic aggregation. Details of the polymer and cation dynamics on the nanosecond timescale are discussed and complement the findings of X-ray scattering and quasi-elastic neutron scattering experiments.  相似文献   

19.
As a typical alkaline earth metal carbide, lithium carbide (Li2C2) has the highest theoretical specific capacity (1400 mA h g?1) among all the reported lithium‐containing cathode materials for lithium ion batteries. Herein, the feasibility of using Li2C2 as a cathode material was studied. The results show that at least half of the lithium can be extracted from Li2C2 and the reversible specific capacity reaches 700 mA h g?1. The C?C bond tends to rotate to form C4 (C?C???C?C) chains during lithium extraction, as indicated with the first‐principles molecular dynamics (FPMD) simulation. The low electronic and ionic conductivity are believed to be responsible for the potential gap between charge and discharge, as is supported with density functional theory (DFT) calculations and Arrhenius fitting results. These findings illustrate the feasibility to use the alkali and alkaline earth metal carbides as high‐capacity electrode materials for secondary batteries.  相似文献   

20.
《化学:亚洲杂志》2017,12(19):2576-2582
Complexation between (O ‐methyl)6‐2,6‐helic[6]arene and a series of tertiary ammonium salts was described. It was found that the macrocycle could form stable complexes with the tested aromatic and aliphatic tertiary ammonium salts, which were evidenced by 1H NMR spectra, ESI mass spectra, and DFT calculations. In particular, the binding and release process of the guests in the complexes could be efficiently controlled by acid/base or chloride ions, which represents the first acid/base‐ and chloride‐ion‐responsive host–guest systems based on macrocyclic arenes and protonated tertiary ammonium salts. Moreover, the first 2,6‐helic[6]arene‐based [2]rotaxane was also synthesized from the condensation between the host–guest complex and isocyanate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号