首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let f(z), an analytic function with radius of convergence R (0 < R < ∞) be represented by the gap series ∑k = 0ckzλk. Set M(r) = max¦z¦ = r ¦f(z)¦, m(r) = maxk ? 0{¦ ck ¦ rλk}, v(r) = maxk ¦ ¦ ck ¦ rλk = m(r)} and define the growth constants ?, λ, T, t by
?λ=lim supr→R inf{log[Rr /(R?r)]?1log+log+M(r)}
, and if 0 < ? < ∞,
Tt=lim supr→R inf{[Rr /(R?r)]??log+M(r)}
. Then, assuming 0 < t < T < ∞, we obtain a decomposition theorem for f(z).  相似文献   

2.
Let G be a minimally k-connected graph of order n and size e(G).Mader [4] proved that (i) e(G)?kn?(k+12); (ii) e(G)?k(n?k) if n?3k?2, and the complete bipartite graph Kk,n?k is the only minimally k-connected graph of order; n and size k(n?k) when k?2 and n?3k?1.The purpose of the present paper is to determine all minimally k-connected graphs of low order and maximal size. For each n such that k+1?n?3k?2 we prove e(G)??(n+k)28? and characterize all minimally k-connected graphs of order n and size ?((n+k)28?.  相似文献   

3.
If r, k are positive integers, then Tkr(n) denotes the number of k-tuples of positive integers (x1, x2, …, xk) with 1 ≤ xin and (x1, x2, …, xk)r = 1. An explicit formula for Tkr(n) is derived and it is shown that limn→∞Tkr(n)nk = 1ζ(rk).If S = {p1, p2, …, pa} is a finite set of primes, then 〈S〉 = {p1a1p2a2psas; piS and ai ≥ 0 for all i} and Tkr(S, n) denotes the number of k-tuples (x1, x3, …, xk) with 1 ≤ xin and (x1, x2, …, xk)r ∈ 〈S〉. Asymptotic formulas for Tkr(S, n) are derived and it is shown that limn→∞Tkr(S, n)nk = (p1 … pa)rkζ(rk)(p1rk ? 1) … (psrk ? 1).  相似文献   

4.
Let V be a set of n points in Rk. Let d(V) denote the diameter of V, and l(V) denote the length of the shortest circuit which passes through all the points of V. (Such a circuit is an “optimal TSP circuit”.) lk(n) are the extremal values of l(V) defined by lk(n)=max{l(V)|VVnk}, where Vnk={V|V?Rk,|V|=n, d(V)=1}. A set VVnk is “longest” if l(V)=lk(n). In this paper, first some geometrical properties of longest sets in R2 are studied which are used to obtain l2(n) for small n′s, and then asymptotic bounds on lk(n) are derived. Let δ(V) denote the minimal distance between a pair of points in V, and let: δk(n)=max{δ(V)|VVnk}. It is easily observed that δk(n)=O(n?1k). Hence, ck=lim supn→∞δk(n)n1k exists. It is shown that for all n, ckn?1k≤δk(n), and hence, for all n, lk(n)≥ ckn1?1k. For k=2, this implies that l2(n)≥(π212)14n12, which generalizes an observation of Fejes-Toth that limn→∞l2(n)n?12≥(π212)14. It is also shown that lk(n) ≤ [(3?√3)k(k?1)]nδk(n) + o(n1?1k) ≤ [(3?√3)k(k?1)]n1?1k + o(n1?1k). The above upper bound is used to improve related results on longest sets in k-dimensional unit cubes obtained by Few (Mathematika2 (1955), 141–144) for almost all k′s. For k=2, Few's technique is used to show that l2(n)≤(πn2)12 + O(1).  相似文献   

5.
We study the structure of a distance-regular graph Γ with girth 3 or 4. First, we find some relationships among the intersection numbers of Γ when Γ contains a cycle {u1, u2, u3, u4} with ?(u1, u3) = ?(u2, u4) = 2. These relationships imply the diameter d, valency k, and intersection numbers a1 and cd of Γ are related by d ≤ (k + cd)(a1 + 2). Next, we show subgraphs induced by vertex neighbourhoods in distance-regular graphs where cycles mentioned above do not exist are related to certain strongly regular graphs.  相似文献   

6.
7.
Let K1, K2,... be a sequence of regular graphs with degree v?2 such that n(Xi)→∞ and ck(Xi)/n(Xi)→0 as i∞ for each k?3, where n(Xi) is the order of Xi, and ck(Xi) is the number of k- cycles in X1. We determine the limiting probability density f(x) for the eigenvalues of X>i as i→∞. It turns out that
f(x)=v4(v?1)?v22π(v2?x2)0
for ?x??2v-1, otherwise It is further shown that f(x) is the expected eigenvalue distribution for every large randomly chosen labeled regular graph with degree v.  相似文献   

8.
The graph G has star number n if any n vertices of G belong to a subgraph which is a star. Let f(n, k) be the smallest number m such that the complete graph on m vertices can be factorized into k factors with star number n. In the present paper we prove that c1nk ≤ f(n, k) < c2nk.  相似文献   

9.
we prove that if R is a nonscalar Toeplitz matrix Ri, j=r?i?j? which commutes with a tridiagonal matrix with simple spectrum, then
rkr1=uk-1r2r1cos puk-1(cos p)
, k=4, 5,…, with Uk the Chebychev polynomial of the second kind, where p is determined from
cos p=12r21?r1r3r22?r1r3
.  相似文献   

10.
In two party elections with popular vote ratio pq, 12≤p=1 ?q, a theoretical model suggests replacing the so-called MacMahon cube law approximation (pq)3, for the ratio PQ of candidates elected, by the ratio ?k(p)?k(q) of the two half sums in the binomial expansion of (p+q)2k+1 for some k. This ratio is nearly (pq)3 when k = 6. The success probability gk(p)=(pa(pa+qa) for the power law (pq)a?PQ is shown to so closely approximate ?k(p)=Σ0k(r2k+1)p2k+1?rqr, if we choose a = ak=(2k+1)!4kk!k!, that 1≤?k(p)gk(p)≤1.01884086 for k≥1 if12≤p≤1. Computationally, we avoid large binomial coefficients in computing ?k(p) for k>22 by expressing 2?k(p)?1 as the sum (p?q) Σ0k(4pq)sas(2s+1), whose terms decrease by the factors (4pq)(1?12s). Setting K = 4k+3, we compute ak for the large k using a continued fraction πak2=K+12(2K+32(2K+52(2K+…))) derived from the ratio of π to the finite Wallis product approximation.  相似文献   

11.
Given a set S of positive integers let ZkS(t) denote the number of k-tuples 〈m1, …, mk〉 for which mi ∈ S ? [1, t] and (m1, …, mk) = 1. Also let PkS(n) denote the probability that k integers, chosen at random from S ? [1, n], are relatively prime. It is shown that if P = {p1, …, pr} is a finite set of primes and S = {m : (m, p1pr) = 1}, then ZkS(t) = (td(S))k Πν?P(1 ? 1pk) + O(tk?1) if k ≥ 3 and Z2S(t) = (td(S))2 Πp?P(1 ? 1p2) + O(t log t) where d(S) denotes the natural density of S. From this result it follows immediately that PkS(n) → Πp?P(1 ? 1pk) = (ζ(k))?1 Πp∈P(1 ? 1pk)?1 as n → ∞. This result generalizes an earlier result of the author's where P = ? and S is then the whole set of positive integers. It is also shown that if S = {p1x1prxr : xi = 0, 1, 2,…}, then PkS(n) → 0 as n → ∞.  相似文献   

12.
This paper treats the class of sequences {an} that satisfy the recurrence relation
a2n+1=∑k=0n(?1)k(nkakdn?k
between the odd and even terms of {an} that involves the coefficients of tan(t), namely
a2n+1=∑k=0n(?1)k(2n+12k+1)Tk(d/2)2k+1a2n?2k
A combinatorial setting is then provided to elucidate the appearance of the tangent coefficients in this equation.  相似文献   

13.
Let {Xn} be a stationary Gaussian sequence with E{X0} = 0, {X20} = 1 and E{X0Xn} = rnn Let cn = (2ln n)built12, bn = cn? 12c-1n ln(4π ln n), and set Mn = max0 ?k?nXk. A classical result for independent normal random variables is that
P[cn(Mn?bn)?x]→exp[-e-x] as n → ∞ for all x.
Berman has shown that (1) applies as well to dependent sequences provided rnlnn = o(1). Suppose now that {rn} is a convex correlation sequence satisfying rn = o(1), (rnlnn)-1 is monotone for large n and o(1). Then
P[rn-12(Mn ? (1?rn)12bn)?x] → Ф(x)
for all x, where Ф is the normal distribution function. While the normal can thus be viewed as a second natural limit distribution for {Mn}, there are others. In particular, the limit distribution is given below when rn is (sufficiently close to) γ/ln n. We further exhibit a collection of limit distributions which can arise when rn decays to zero in a nonsmooth manner. Continuous parameter Gaussian processes are also considered. A modified version of (1) has been given by Pickands for some continuous processes which possess sufficient asymptotic independence properties. Under a weaker form of asymptotic independence, we obtain a version of (2).  相似文献   

14.
We find lower bounds on eigenvalue multiplicities for highly symmetric graphs. In particular we prove:Theorem 1. If Γ is distance-regular with valency k and girth g (g?4), and λ (λ≠±?k) is an eigenvalue of Γ, then the multiplicity of λ is at least
k(k?1)[g4]?1
if g≡0 or 1 (mod 4),
2(k?1)[g4]
if g≡2 or 3 (mod 4) where [ ] denotes integer part. Theorem 2. If the automorphism group of a regular graph Γ with girth g (g?4) and valency k acts transitively on s-arcs for some s, 1?s?[12g], then the multiplicity of any eigenvalue λ (λ≠±?k) is at least
k(k?1)s2?1
if s is even,
2(k?1)(s?1)2
if s is odd.  相似文献   

15.
Let H = ?Δ + V, where the potential V is spherically symmetric and can be decomposed as a sum of a short-range and a long-range term, V(r) = VS(r) + VL. Let λ = lim supr→∞VL(r) < ∞ (we allow λ = ? ∞) and set λ+ = max(λ, 0). Assume that for some r0, VL(r) ?C2k(r0, ∞) and that there exists δ > 0 such that (ddr)jVL(r) · (λ+ ? VL(r) + 1)?1 = O(r?jδ), j = 1,…, 2k, as r → ∞. Assume further that 1(dr¦ VL(r)¦12) = ∞ and that 2 > 1. It is shown that: (a) The restriction of H to C(Rn) is essentially self-adjoint, (b) The essential spectrum of H contains the closure of (λ, ∞). (c) The part of H over (λ, ∞) is absolutely continuous.  相似文献   

16.
Two sets of sets, C0 and C1, are said to be visually equivalent if there is a 1-1 mapping m from C0 onto C1 such that for every S, T?C0, ST=0 if and only if m(S)∩ m(T)=0 and S?T if and only if m(S)?m(T). We find estimates for V(k), the number of equivalence classes of this relation on sets of k sets, for finite and infinite k. Our main results are that for finite k, 12k2-k log k <log V (k)<ak2+βk+log k, where α and β are approximately 0.7255 and 2.5323 respectively, and there is a set N of cardinality 12(k2+k) such that there are V(k) visually distinct sets of k subsets of N.  相似文献   

17.
In this paper we study the linked nonlinear multiparameter system
yrn(Xr) + MrYr + s=1k λs(ars(Xr) + Prs) Yr(Xr) = 0, r = l,…, k
, where xr? [ar, br], yr is subject to Sturm-Liouville boundary conditions, and the continuous functions ars satisfy ¦ A ¦ (x) = detars(xr) > 0. Conditions on the polynomial operators Mr, Prs are produced which guarantee a sequence of eigenfunctions for this problem yn(x) = Πr=1kyrn(xr), n ? 1, which form a basis in L2([a, b], ¦ A ¦). Here [a, b] = [a1, b1 × … × [ak, bk].  相似文献   

18.
Let L(E) be the set of all linear mappings of a vector space E. Let Z+ be the set of all positive integers. A nonzero element ? in L(E) is called an r-potent if ?r=? and ?i≠?for 1<i<r (i,r∈Z+). We prove that S(E)= {?∈L(E): ? is singular} is a semigroup generated by the set of all r-potents in S(E), where r is a fixed positive integer with 2?r?n=dim(E).  相似文献   

19.
Let k be a positive square free integer, N(?k)12 the ring of algebraic integers in Q(?k)12 and S the unit sphere in Cn, complex n-space. If A1,…, An are n linearly independent points of Cn then L = {u1Au + … + unAn} with ur ∈ N(?k)12 is called a k-lattice. The determinant of L is denoted by d(L). If L is a covering lattice for S, then θ(S, L) = V(S)d(L) is the covering density. L is called locally (absolutely) extreme if θ(S, L) is a local (absolute) minimum. In this paper we determine unique classes of extreme lattices for k = 1 and k = 3.  相似文献   

20.
In this paper, we establish the following results: Let A be a square matrix of rank r. Then (a) (A+A1)2 is idempotent of rank r, and trrA (defined as the sum of the principal minors of order r in A) is one iff A is Hermitian idempotent. (b) As=At for some positive integers st, and trA=rankA iff A is idempotent. (c) A(A1A)s= A(AA1)t for some integers st iff AA1=A1A is idempotent, while A(A1A)s= A(AA1)s for some integers s≠0 iff AA1=A1A. (d) A(A1A)s=A1 (AA1)t for some integers st and rankA=trA iff A is Hermitian idempotent, while A(A1A)s= A1(AA1)s for some integer s iff A is Hermitian. Here A1 indicates the conjugate transpose of A, and P-α is defined iff (P+)α=(Pα)+ for all positive integers α and P+ is the Moore-Penrose inverse of P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号