首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Let p(t, x, y) be a symmetric transition density with respect to a σ-finite measure m on (E, E), g(x,y)=∫p(t,x,y)dt, and M={σ-finite measures μ?0:∫g(x,y)μ(dx)μ(dy)<∞}. There exists a Gaussian random field Φ={?μ:μ?M} with mean 0 and covariance E?μ?ν=∫g(x,y)μ(dx)ν(dy). Letting F(B)=σ{?μ:μ(Bc)=0} we consider necessary and sufficient conditions for the Markov property (MP) on sets B, C: F(B), F(C) c.i. given F(BC). Of crucial importance is the following, proved by Dynkin: E{?μF(B)}=?μB, where μB is the hitting distribution of the process corresponding to p, m with initial law μ. Another important fact is that ?μ=?ν iff μ, ν have the same potential. Putting these together with an additional transience assumption, we present a potential theoretic proof of the following necessary and sufficient condition for (MP) on sets B, C: For every x?E, TBC=TB+TCθTB=TC+TBθTC a.s. Px where, for D ? E, TD is the hitting time of D for the process associated with p, m. This implies a necessary condition proved by Dynkin in a recent preprint for the case where BC=E and B, C are finely closed.  相似文献   

2.
For 1 ≦ lj, let al = ?h=1q(l){alh + Mv: v = 0, 1, 2,…}, where j, M, q(l) and the alh are positive integers such that j > 1, al1 < … < alq(2)M, and let al = al ∪ {0}. Let p(n : B) be the number of partitions of n = (n1,…,nj) where, for 1 ≦ lj, the lth component of each part belongs to Bl and let p1(n : B) be the number of partitions of n into different parts where again the lth component of each part belongs to Bl. Asymptotic formulas are obtained for p(n : a), p1(n : a) where all but one nl tend to infinity much more rapidly than that nl, and asymptotic formulas are also obtained for p(n : a′), p1(n ; a′), where one nl tends to infinity much more rapidly than every other nl. These formulas contrast with those of a recent paper (Robertson and Spencer, Trans. Amer. Math. Soc., to appear) in which all the nl tend to infinity at approximately the same rate.  相似文献   

3.
Let (Ω, A, μ) be a probability space and let B be a subsigma algebra of A. Let A= LΩ, A, μ , let A= LΩ, B, μ, and let f?A. It is shown that best L-approximations of f by elements of B comprise an interval in B; that is, there exists f,f?B such that a function g?B is a best L-approximation to f if and only if f? g ? f a.e. on Ω. The difference, f ? f, of f and f is completely characterized in terms of special sets that have been developed in [2]. Then it is established that the best best L-approximation, fB,∞, to f by elements of B is the average of f and f, where the function fB,∞ is defined by fB,∞(ω) limp → ∞fB,P(ξ) and fB,P denotes the best Lp-approximation to f elements of Lp(Ω, B, μ).  相似文献   

4.
This paper continues the study of the inverse balayage problem for Markov chains. Let X be a Markov chain with state space A ? B2, let v be a probability measure on B2 and let M(v) consist of probability measures μ on A whose X-balayage onto B2 is v. The faces of the compact, convex set M(v) are characterized. For fixed μ?M(v) the set M(μ,v) of the measures ? of the form ?(·) = Pμ{X(S) ? ·}, where S is a randomized stopping time, is analyzed in detail. In particular, its extreme points and edge are explicitly identified. A naturally defined reversed chain X, for which v is an inverse balayage of μ, is introduced and the relation between X and X^ is studied. The question of which ? ? M(μ, v) admit a natural stopping time S? of X (not involving an independent randomization) such that ?(·) = Pμ{X(S?) ? ·}, is shown to have rather different answers in discrete and continuous time. Illustrative examples are presented.  相似文献   

5.
Let Y be an N(μ, Σ) random variable on Rm, 1 ≤ m ≤ ∞, where Σ is positive definite. Let C be a nonempty convex set in Rm with closure C. Let (·,-·) be the Eculidean inner product on Rm, and let μc be the conditional expected value of Y given YC. For vRm and s ≥ 0, let βs(v) be the expected value of |(v, Y) ? (v, μ)|s and let γs(v) be the conditional expected value of |(v, Y) ? (v, μc)|s given YC. For s ≥ 1, γs(v) < βs(v) if and only if C + Σ v ≠ C, and γs(v) < βs(v) for all v ≠ 0 if and only if C + v ≠ C for any vRm such that v ≠ 0.  相似文献   

6.
A Hilbert bundle (p, B, X) is a type of fibre space p: BX such that each fibre p?1(x) is a Hilbert space. However, p?1(x) may vary in dimension as x varies in X, even when X is connected. We give two “homotopy” type classification theorems for Hilbert bundles having primarily finite dimensional fibres. An (m, n)-bundle over the pair (X, A) is a Hilbert bundle over (p, B, X) such that the dimension of p?1(x) is m for x in A and n otherwise. As a special case, we show that if X is a compact metric space, C+X the upper cone of the suspension SX, then the isomorphism classes of (m, n)-bundles over (SX, C+X) are in one-to-one correspondence with the members of [X, Vm(Cn)] where Vm(Cn) is the Stiefel manifold. The results are all applicable to the classification of separable, continuous trace C1-algebras, with specific results given to illustrate.  相似文献   

7.
Let H = ?Δ + V, where the potential V is spherically symmetric and can be decomposed as a sum of a short-range and a long-range term, V(r) = VS(r) + VL(r). Assume that for some r0, VL(r) ?C2k(r0, ∞) and that there exist μ > 0, δ > 0, such that (ddr)jVL(r) = O(r?μ?jδ) as r → ∞, 1 ? j ? 2k. Assume further that min(2, (2k ? 1)δ + μ) > 1. Under this weak decay condition on VL(r) it is shown in this paper that the positive spectrum of H is absolutely continuous and that the absolutely continuous part of H is unitarily equivalent to ?Δ, provided that the singularity of V at 0 is properly restricted. In particular, some oscillation of VL(r) at infinity is allowed.  相似文献   

8.
9.
10.
Let Sp(H) be the symplectic group for a complex Hibert space H. Its Lie algebra sp(H) contains an open invariant convex cone C0; each element of C0 commutes with a unique sympletic complex structure. The Cayley transform C: X∈ sp(H)→(I + X)1∈ Sp(H) is analyzed and compared with the exponential mapping. As an application we consider equations of the form (ddt) S = A(t)S, where t → A(t) ? C?0 is strongly continuous, and show that if ∝?∞A(t)∥ dt < 2 and ∝? t8A(t) dt?C0, the (scattering) operator
S=s?limt→∞t′→?∞ St(t)
, where St(t) is the solution such that St(t′) = I, is in the range of B restricted to C0. It follows that S leaves invariant a unique complex structure; in particular, it is conjugate in Sp(H) to a unitary operator.  相似文献   

11.
The K-theory of the C1-algebra C1(V, F) associated to C-foliations (V, F) of a manifold V in the simplest non-trivial case, i.e., dim V = 2, is studied. Since the case of the Kronecker foliation was settled by Pimsner and Voiculescu (J. Operator Theory4 (1980), 93–118), the remaining problem deals with foliations by Reeb components. The K-theory of C1(V, F) for the Reeb foliation of S3 is also computed. In these cases the C1-algebra C1(V, F) is obtained from simpler C1-algebras by means of pullback diagrams and short exact sequences. The K-groups K1(C1(V, F)) are computed using the associated Mayer-Vietoris and six-term exact sequences. The results characterize the C1-algebra of the Reeb foliation of T2 uniquely as an extension of C(S1) by C(S1). For the foliations of T2 it is found that the K-groups count the number of Reeb components separated by stable compact leaves. A C-foliation of T2 such that K1(C1(T2, F)) has infinite rank is also constructed. Finally it is proved, by explicit calculation using (M. Penington, “K-Theory and C1-Algebras of Lie Groups and Foliations,” D. Phil. thesis, Oxford, 1983), that the natural map μ: K1,τ(BG) → K1(C1(V, F)) is an isomorphism for foliations by Reeb components of T2 and S3. In particular this proves the Baum-Connes conjecture (P. Baum and A. Connes, Geometric K-theory for Lie groups, preprint, 1982; A. Connes, Proc. Symp. Pure Math.38 (1982), 521–628) when V = T2.  相似文献   

12.
Let C be a Banach space, H a Hilbert space, and let F(C,H) be the space of C functions f: C × HR having Fredholm second derivative with respect to x at each (c, x) ?C × H for which D?c(x) = 0; here we write ?c(x) for ?(c, x). Say ? is of standard type if at all critical points of ?c it is locally equivalent (as an unfolding) to a quadratic form Q plus an elementary catastrophe on the kernel of Q. It is proved that if f?F (A × B, H) satisfies a certain ‘general position’ condition, and dim B ? 5, then for most a?A the function fo?F(B,H) is of standard type. Using this it is shown that those f?F(B,H) of standard type form an open dense set in F(B,H) with the Whitney topology. Thus both results are Hilbert-space versions of Thom's theorem for catastrophes in Rn.  相似文献   

13.
Let B(H) be the bounded operators on a Hilbert space H. A linear subspace R ? B(H) is said to be an operator system if 1 ?R and R is self-adjoint. Consider the category b of operator systems and completely positive linear maps. R ∈ C is said to be injective if given A ? B, A, B ∈ C, each map AR extends to B. Then each injective operator system is isomorphic to a conditionally complete C1-algebra. Injective von Neumann algebras R are characterized by any one of the following: (1) a relative interpolation property, (2) a finite “projectivity” property, (3) letting Mm = B(Cm), each map RN ? Mm has approximate factorizations RMnN, (4) letting K be the orthogonal complement of an operator system N ? Mm, each map MmK → R has approximate factorizations MmK → Mn → R. Analogous characterizations are found for certain classes of C1-algebras.  相似文献   

14.
The least absolute deviation estimates L(N), from N data points, of the autoregressive constants a = (a1, …, aq)′ for a stationary autoregressive model, are shown to have the property that Nσ(L(N) ? a) converge to zero in probability, for σ < 1α, where the disturbances are i.i.d., attracted to a stable law of index α, 1 ≤ α < 2, and satisfy some other conditions.  相似文献   

15.
Let N be a simply connected nilpotent Lie group and Γ a discrete uniform subgroup. The authors consider irreducible representations σ in the spectrum of the quasi-regular representation N × L2(Γ/N) → L2(Γ→) which are induced from normal maximal subordinate subgroups M ? N. The primary projection Pσ and all irreducible projections P ? Pσ are given by convolutions involving right Γ-invariant distributions D on Γ→, Pf(Γn) = D 1 f(Γn) = <D, n · f>all f ? C(Γ/N), where n · f(ζ) = f(ζ · n). Extending earlier work of Auslander and Brezin, and L. Richardson, the authors give explicit character formulas for the distributions, interpreting them as sums of characters on the torus Tκ = (ΓM) · [M, M]?M. By examining these structural formulas, they obtain fairly sharp estimates on the order of the distributions: if σ is associated with an orbit O ? n1 and if V ? n1 is the largest subspace which saturates θ in the sense that f ? O ? f + V ? O. As a corollary they obtain Richardson's criterion for a projection to map C0(Γ→) into itself. The authors also resolve a conjecture of Brezin, proving a Zero-One law which says, among other things, that if the primary projection Pσ maps Cr(Γ→) into C0(Γ→), so do all irreducible projections P ? Pσ. This proof is based on a classical lemma on the extent to which integral points on a polynomial graph in Rn lie in the coset ring of Zn (the finitely additive Boolean algebra generated by cosets of subgroups in Zn). This lemma may be useful in other investigations of nilmanifolds.  相似文献   

16.
Let H be a complex Hilbert space, and let Gi, i = 1, 2, be closed and orthogonal subspaces of the product space H × H. The subspace G = G1G2 is called a (graph) perturbation. We give conditions for invariance of regular operators (R.O.) under graph perturbations: When is the perturbation of a R.O. again a R.O.? If N is a Hilbert space we consider R.O. (i.e., densely defined and closed operators T) in H=L(N) such that G(T)=G(S)⊕VH(M, where G denotes the graph, S is a decomposable operator in H, V a decomposable partial isometry such that the initial space of V(t) is equal to M a.e. t, and finally H(M) is the Hardy space of analytic L2 vector functions with values in M ? N × N. Such operators T commute with the bilateral shift U; but, unless M = 0, T does not commute with U1. Conversely, this is a canonical model for all R.O. with said commutativity properties. Moreover, the model is unique when T is given, and M = G(w) where w is a partial isometry in N. The detailed structure of the model is analyzed in the special case where dim N = dim M = 1. We relate the problem to a condition of Szeg? by showing that T is a R.O. iff0log ¦ V2(t)¦ dt = ?∞, where V = (V1, V2) is the partial isometry in the special case of dimension one. Szeg?'s conditions enters in a different way in the analysis of the case M = N × N, as well as in the spectral analysis of T. Our results provide an answer to a commutativity problem posed by Fuglede. If T is an arbitrary densely defined operator, and A?B(H) is normal, we prove two theorems stating conditions for the implication A T ? A1T. These conditions cannot generally be relaxed.  相似文献   

17.
Two sets of sets, C0 and C1, are said to be visually equivalent if there is a 1-1 mapping m from C0 onto C1 such that for every S, T?C0, ST=0 if and only if m(S)∩ m(T)=0 and S?T if and only if m(S)?m(T). We find estimates for V(k), the number of equivalence classes of this relation on sets of k sets, for finite and infinite k. Our main results are that for finite k, 12k2-k log k <log V (k)<ak2+βk+log k, where α and β are approximately 0.7255 and 2.5323 respectively, and there is a set N of cardinality 12(k2+k) such that there are V(k) visually distinct sets of k subsets of N.  相似文献   

18.
A t-spread set [1] is a set C of (t + 1) × (t + 1) matrices over GF(q) such that ∥C∥ = qt+1, 0 ? C, I?C, and det(X ? Y) ≠ 0 if X and Y are distinct elements of C. The amount of computation involved in constructing t-spread sets is considerable, and the following construction technique reduces somewhat this computation. Construction: Let G be a subgroup of GL(t + 1, q), (the non-singular (t + 1) × (t + 1) matrices over GF(q)), such that ∥G∥|at+1, and det (G ? H) ≠ 0 if G and H are distinct elements of G. Let A1, A2, …, An?GL(t + 1, q) such that det(Ai ? G) ≠ 0 for i = 1, …, n and all G?G, and det(Ai ? AjG) ≠ 0 for i > j and all G?G. Let C = &{0&} ∪ G ∪ A1G ∪ … ∪ AnG, and ∥C∥ = qt+1. Then C is a t-spread set. A t-spread set can be used to define a left V ? W system over V(t + 1, q) as follows: x + y is the vector sum; let e?V(t + 1, q), then xoy = yM(x) where M(x) is the unique element of C with x = eM(x). Theorem: LetCbe a t-spread set and F the associatedV ? Wsystem; the left nucleus = {y | CM(y) = C}, and the middle nucleus = }y | M(y)C = C}. Theorem: ForCconstructed as aboveG ? {M(x) | x?Nλ}. This construction technique has been applied to construct a V ? W system of order 25 with ∥Nλ∥ = 6, and ∥Nμ∥ = 4. This system coordinatizes a new projective plane.  相似文献   

19.
Let (Ω, β, μX) and (?, F, μN) be probability spaces, with f: Ω × ? ? ? a β × F|F measurable map. Define μXY on β × F by μXY(A) = μX ? μN{(x, y): (x, f(x, y)) ?A}, and let μY = (μX ? μN)of?1. An expression is determined for computing the Shannon information in the measure μXY. This expression is used to compute the information for the non-linear additive Gaussian channel, and can be used to solve the channel capacity problem.  相似文献   

20.
Let B(Z1, z2) be a power series and C(z1, z2) be the least mean-square inverse approximation of B among polynomials of a fixed order. This paper discusses conditions under which B?(z1, z2), the least mean-square inverse polynomial approximation of C, does not vanish on the unit bicylinder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号