首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The complex dielectric permittivity, ionic conductivity, electric modulus and impedance spectra of the dipolar molecules formamide (FA), 2-aminoethanol (AE) and their binary mixtures were investigated in the frequency range from 20 Hz to 1 MHz at 303.15 K. Debye-type distributions of the frequency dependent electric modulus and complex impedance were found, corresponding to an ionic conduction relaxation process in the upper frequency regime of the spectra, whereas a spike in the impedance spectra at low frequencies confirms the contribution of an electrode polarization (EP) relaxation process induced by ionic conduction. Due to the high static permittivity of FA, its ionic conductivity was found more than one order of magnitude higher than that of the AE, which is also shown by the comparative values of their EP and ionic conductivity relaxation times. The dependences of dc ionic conductivity values of the binary mixtures on their relaxation times and static permittivity were explored. The concentration dependent static permittivity and the relaxation times led us to infer the formation of a 1:1 H-bonded stable complex between FA and AE molecules with reduction in the number of effective parallel-aligned dipoles.  相似文献   

2.
膜/液界面浓度极化现象的介电解析   总被引:1,自引:0,他引:1  
对由强、弱荷电膜和溶液构成的膜/液非均匀体系,在10-107Hz频率范围进行了介电测量,在直流偏压下,该体系显示了二个显著的介电弛豫.利用具有电导率分布相,即浓度极化相的介电理论对强行电的离子交换膜的结果进行了介电解析,从实验上测得的介电参数求出了反映膜/液界面浓度极化层构造的参数,讨论了该体系产生介电弛像的原因、说明了介电理论的合理性,并提出了膜/液界面体系产生介电弛豫现象的可能机理.  相似文献   

3.
Dielectric relaxation spectra of CTAB reverse micellar solutions, CTAB/isooctane/n-hexanol/water systems with different concentrations of CTAB and different water contents, were investigated in the frequency range from 40 Hz to 110 MHz. Two striking dielectric relaxations were observed at about 10(4) Hz and 10(5) Hz, respectively. Dielectric parameters were obtained by fitting the data using the Cole-Cole equation with two Cole-Cole dispersion terms and the electrode polarization term. These parameters show different variation with the increase of the concentration of CTAB or the water content. In order to explain the two relaxations systematically and obtain detailed information on the systems and the inner surface of the reverse micelles, an electrical model has been constituted. On the basis of this model, the low-frequency dielectric relaxation was interpreted by the radial diffusion of free counterions in the diffuse layer with Grosse model. For the high-frequency dielectric relaxation, Hanai theory and the corresponding analysis method were used to calculate the phase parameters of the constituent phases in these systems. The reasonable analysis results suggest that the high-frequency relaxation probably originated from the interfacial polarization. The structural and electrical information of the present systems were obtained from the phase parameters simultaneously.  相似文献   

4.
We report results from complementary electrokinetic measurements-dielectric relaxation and electrophoretic mobility-undertaken to test the applicability of the standard electrokinetic theory with a model system. Dielectric spectra were obtained at frequencies between 1 kHz and 40 MHz with a new, two-electrode cell design [Hollingsworth and Saville, J. Colloid Interface Sci. 257 (2003) 65-76]; mobility data were acquired with an electrophoretic light scattering instrument. Data from the two-electrode cell were collected at different electrode separations and interpreted with newly developed procedures to remove the influence of electrode polarization. Methodology A employs extrapolation to infinite electrode separation to compute the dielectric constant and conductivity as functions of frequency. The contributions from suspended particles are reported in terms of dielectric constant and conductivity increments. Methodology B uses a theoretical model of electrode polarization and the standard electrokinetic model in a nonlinear regression scheme. Results are presented in several forms: frequency-dependent dielectric constant and conductivity increments, frequency-dependent dielectric constants and conductivities, and the complex dipole coefficient. It is shown that the standard model provides a consistent methodology for interpreting particle behavior; zeta-potentials inferred from mobility and dielectric relaxation agree to within experimental error. Moreover, the cell design and interpretation are straightforward and provide relatively simple ways to obtain complementary measurements over a wide frequency range. The results unambiguously show that electrokinetic character of this dispersion follows the standard model.  相似文献   

5.
The Cu2Cr-DS-LDH hybrid was successfully prepared by the anion exchange method at room temperature. The structure, the chemical composition and the physico-chemical properties of the sample were determined using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and inductively coupled plasma (ICP). In this work, the electrical and dielectric properties investigated are determined using impedance spectroscopy (IS) in a frequency range of 1 Hz to 1 MHz. Indeed, the Nyquist diagram modelized by an electrical equivalent circuit showed three contributions attributed respectively to the polarization of grains, grains boundaries and interface electrode-sample. This modelization allowed us to determine the intrinsic electrical parameters of the hybrid (resistance, pseudo-capacitance and relaxation time). The presence of the non-Debye relaxation phenomena was confirmed by the frequency analysis of impedance. Moreover, the evolution of the alternating current conductivity (σac) studied obeys the double power law of Jonscher. The ionic conduction of this material was generated through a jump movement by translation of the charge carriers. As for the dielectric behavior of the material, the evolution of dielectric constant as a function of frequency shows relatively high values in a frequency range between 10 Hz and 1 KHz. The low values of the loss tangent obtained in this frequency zone can valorize this LDH hybrid.  相似文献   

6.
Piezoelectric relaxation has been studied on elongated poly(γ-methyl-L-glutamate) films with the α-helical molecular conformation. Relaxation processes are observed near 0 and 100°C. Each process has a dual character composed of relaxational and retardational frequency dependences. The low-temperature process is ascribed to thermal motion of side chains. The high-temperature process, discussed in relation to the dielectric relaxation, is attributed to the ionic dc conduction connected with the two-phase structure of crystalline regions and the electrode polarization.  相似文献   

7.
The relative complex dielectric function, electric modulus, alternating current (ac) electrical conductivity and complex impedance spectra of poly(ethylene oxide) (PEO)–montmorillonite (MMT) clay aqueous colloidal suspension (hydrocolloids) were investigated over the frequency range 20 Hz to 1 MHz at 27 °C. The relaxation time corresponding to electrode polarisation and Maxwell–Wagner polarisation processes (ionic conduction) were determined from these plots. The direct current (dc) electrical conductivity is evaluated from the fitting of real part ac conductivity data to the Jonscher power law. A correlation of increase in dc conductivity and decrease of ionic conduction relaxation time with increase of clay concentration is discussed considering intercalation of PEO chains and its dynamics and exfoliation of MMT clay nanoplatelets in these complex fluids. The formation of PEO–MMT clay supramolecular lamellar nanostructures with increase in continuity of lamellae arrangements were explored for the structural conformation of these nanocomposite novel materials.  相似文献   

8.
A series of ferroelectric poly(vinylidene fluoride-chlorotrifluoroethylene-trifluoroethylene)s, P(VDF-CTFE-TrFE), with systematically varied chemical compositions have been synthesized via a two-step approach consisting of copolymerization and dechlorination. The effect of polymer structure on polarization responses and dielectric properties has been investigated over a broad frequency and temperature range. As shown in the X-ray diffraction patterns, multiple phases coexist within the terpolymers as a result of the gauche conformation induced by the CTFE unit. The polarization hysteresis loops reveal the variation of remanent polarization and coercive electric field with the CTFE content due to the changes of crystallinity and crystalline phase. The observed broad dielectric constant peak with Vogel-Fulcher dielectric dispersion behavior suggests a transformation from a normal ferroelectric to a ferroelectric relaxor of the polymers. The relationship between the local relaxation process and relaxor ferroelectric behavior has been examined on the basis of the dielectric and mechanical loss tangents as a function of temperature.  相似文献   

9.
In this work thermal relaxations of chitosan are reported by using a novel methodology that includes subtraction of the dc conductivity contribution, the exclusion of contact and interfacial polarization effects, and obtaining a condition of minimum moisture content. When all these aspects are taken into account, two relaxations are clearly revealed in the low frequency side of the impedance data. We focus on the molecular motions in neutralized and non‐neutralized chitosan analyzed by dielectric spectroscopy in the temperature range from 25 to 250 °C. Low and high frequency relaxations were fitted with the Havriliak and Negami model in the 10?1 to 108 Hz frequency range. For the first time, the low frequency α‐relaxation associated with the glass‐rubber transition has been detected by this technique in both chitosan forms for moisture contents in the range 0.05 to 3 wt % (ca. 18–62 °C). A strong plasticizing effect of water on this primary α‐relaxation is observed by dielectric spectroscopy and is supported by dynamic mechanical analysis measurements. In the absence of water (<0.05 wt %) the α‐relaxation is obscured in the 20–70 °C temperature range by a superposition of two low frequency relaxation processes. The activation energy for the σ‐relaxation is about 80.0–89.0 kJ/mol and for β‐relaxation is about 46.0–48.5 kJ/mol and those values are in agreement with that previously reported by other authors. The non‐neutralized chitosan possess higher ion mobility than the neutralized one as determined by the frequency location of the σ‐relaxation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2259–2271, 2009  相似文献   

10.
Electrolytes and their dissociated ions are thought to form positive or negative hydration layers around them. In this study, we have developed a method to determine the volume and the dielectric relaxation property (relaxation frequency f c, dispersion intensity delta) of the water hydrating ions in salt solutions. The method consists of four steps: (1) By use of a high-resolution microwave dielectric spectroscopy technique, the dielectric spectra of sample salt solution and bulk water are measured in pair. (2) The dielectric spectrum of solutes (ions) with water layers for a given volume fraction varphi is then calculated from each pair of dielectric spectra of a sample salt solution and reference water according to the Hanai mixture theory. (3) Each spectrum of solutes with water layers at a given varphi is decomposed into a few Debye relaxation functions and the bulk water component. (4) The volume fraction varphi is operationally decreased from 0.5, and steps (2) and (3) are repeated at each varphi until the bulk water component vanished. Then the volume fraction of the hydrated solutes (ions) in solution is determined. The method was applied to NaF and NaCl solutions. As a result the different spectral intensity was nearly proportional to the salt concentration below 0.2 M in the frequency range of 3-26 GHz. The hydration number N h and the dielectric relaxation property of the hydration layer for each salt solution was successfully determined as ( f c1, delta 1, N h)= (18.7, 44.9, 27.9) for NaCl and ( f c1, delta 1, f c2, delta 2, N h) = (26.0, 6.70, 5.64, 19.2) for NaF.  相似文献   

11.
The dielectric dispersion and absorption spectra of formamide (FA), N,N-dimethylformamide (DMF) and their binary mixtures are investigated in the frequency range of 500 MHz to 20 GHz at 30 °C in view of the organic synthesis by microwaves heating using amides solvents. The concentration dependent values of molecular reorientation relaxation times lower than that of the ideal mixing behaviour have been attributed to the cooperative dynamics of H-bonded FA–DMF structures. The molar ratio of stable adduct is 2:1 of FA to the DMF, which is determined from the concentration dependent excess static dielectric constant and the relaxation time plots of these binary mixtures. Electrode polarization effect and ionic conduction in FA and DMF were investigated from their dielectric dispersion spectra in the low frequency region of 20 Hz to 1 MHz.  相似文献   

12.
《印度化学会志》2023,100(1):100813
The present work is aimed to study the dielectric and electrical characteristics of bis (P-nitrophenol) melaminium monohydrate (BNPM) over the temperature and frequency ranges of 333–453 K and 50 Hz–5 MHz, respectively. The dielectric properties such as dielectric constant (ε′), dielectric loss (ε″), ac-conductivity (σac), real (M′) and imaginary part (M″) of dielectric modulus were investigated as a function of temperature and frequency. The impedance analysis has been carried out using Cole-Cole plots to elucidate the electrical conduction mechanism. Further, observations indicated that the grain boundaries are more resistive and capacitive than the grains, inducing inhomogeneity in the material, which, in turn, causes broad frequency-dependent dielectric anomalies. The observed frequency-dependence of the AC conductivity validated the Jonscher power law. Further, an asymmetric dispersion peak in the imaginary part of the electrical modulus (M”) was noticed, indicating that the fabricated material exhibits non-Debye relaxation behavior.  相似文献   

13.
The dependence of the impedance of the electrode double layer of mercury electrode on frequency around the potentials of the tensammetric peaks of single-stranded and double-helical polynucleotides and DNA was studied. From the frequency dependence of the impedance of the electrode double layer represented in a complex plane impedance plot, the electric equivalent circuit of the electrode covered with adsorbed DNA layer was determined. It was concluded that the desorption of denatured ssDNA is accompanied by higher dielectric losses than the desorption of native dsDNA. This can be explained by the higher flexibility of ssDNA compared to the dsDNA. The capacitance peak of single-stranded polyadenylic acid (poly A) observed at pH 8 around -1.3 V splits at low frequencies in two peaks.  相似文献   

14.
A double perovskite oxide Ba2FeSbO6 was hydrothermally synthesized and structurally characterized by X-ray diffraction. This solid compound shows a single phase and has a trigonal structure with space group R m and cell parameters of a=0.57261 nm and c=1.40244 nm. The dielectric constant and loss tangent of the solid measured in a frequency range from 100 Hz to 1 MHz at temperatures from 313 K to 513 K reveal a relaxation process of frequency dependence of the real part(ε') of dielectric constant and dielectric loss tand. The frequency dependence of electrical property led to the framework of conductivity and electric modulus formalisms. The scaling behavior of imaginary part of electric modulus suggests that the relaxation describes the single mechanism at various temperatures. The variation tendency of the alternating current impedance indicates the thermally activated conduction process follows Jonsche’s power law.  相似文献   

15.
We report on molecular dynamics simulations of the frequency-dependent dielectric relaxation spectra at room temperature for aqueous solutions of a hydrophilic peptide and an amphiphilic peptide at two concentrations. We find that only the high-concentration amphiphilic peptide solution exhibits an anomalous dielectric increment over that of pure water, while the hydrophilic peptide exhibits a significant dielectric decrement. The dielectric component analysis carried out by decomposing these peptide solutions into peptide, hydration layer, and outer layer(s) of water clearly shows the presence of a unique dipolar component with a relaxation time scale on the order of approximately 25 ps (compared to the bulk water time scale of approximately 11 ps) that originates from the interaction between the hydration layer water and the outer layer(s) of water. Results obtained from the dielectric component analysis further show the emergence of a distinct and much lower frequency relaxation process for the high-concentration amphiphilic peptide compared to the hydrophilic peptide due to strong peptide dipolar couplings to all constituents, accompanied by a slowing of the structural relaxation in all water layers, giving rise to time scales close to approximately 1 ns. We suggest that the molecular origin of the dielectric relaxation anomalies is due to frustration in the water network arising from the amphiphilic chemistry of the peptide that does not allow it to reorient on the picosecond time scale of bulk water motions. This explanation is consistent with the idea of the "slaving" of residue side chain motions to protein surface water, and furthermore offers the possibility that the anomalous dynamics observed from a number of spectroscopies arises at the interface of hydrophobic and hydrophilic domains on the protein surface.  相似文献   

16.
Dielectric measurements were carried out on colloidal suspensions of palladium nanoparticle chains dispersed in poly(vinyl pyrrolidone)/ethylene glycol (PVP/EG) solution with different particle volume fractions, and dielectric relaxation with relaxation time distribution and small relaxation amplitude was observed in the frequency range from 10(5) to 10(7) Hz. By means of the method based on logarithmic derivative of the dielectric constant and a numerical Kramers-Kronig transform method, two dielectric relaxations were confirmed and dielectric parameters were determined from the dielectric spectra. The dielectric parameters showed a strong dependence on the volume fraction of palladium nanoparticle chain. Through analyzing limiting conductivity at low frequency, the authors found the conductance percolation phenomenon of the suspensions, and the threshold volume fraction is about 0.18. It was concluded from analyzing the dielectric parameters that the high frequency dielectric relaxation results from interfacial polarization and the low frequency dielectric relaxation is a consequence of counterion polarization. They also found that the dispersion state of the palladium nanoparticle chain in PVP/EG solution is dependent on the particle volume fraction, and this may shed some light on a better application of this kind of materials.  相似文献   

17.
18.
The Na3Nb4As3O19 compound is synthesized by solid state reaction method and characterized by X-ray diffraction. The structure is described as a three-dimensional anionic framework having two kinds of tunnels where sodium cations are located. The framework of the title compound is thus of open character and the motion of sodium cations through the tunnels seems to be feasible. This factor led us to study the ionic conduction. In this work, we present the dielectric and electrical properties of Na3Nb4As3O19 compound by using the complex impedance spectroscopy technique, in the frequency range 0.01 – 13000 kHz. The conductivity measurements of the obtained ceramic are studied over a temperature range from 300 to 620 °C. The real and imaginary parts of the dielectric constant were found to decrease with frequency and to increase with temperature. The values of the frequency of the maximum of the imaginary part of the modulus and of the impedance are different indicating a non-Debye type of relaxation process. The values of the activation energy (Ea) calculated by different methods are in conformity. The Bond Valence Sum (BVS) model is used to identify the conduction pathways for the monovalent cations, allowing a better correlation between the electrical and the structural data. It suggests that the most probable sodium conduction pathway is along c-direction.  相似文献   

19.
Electrode impedance is a significant artifact in low frequency dielectric measurements involving conducting media. In their recent review article regarding the dielectric dispersion of aqueous colloidal systems, Grosse and Delgado [1] presented an electrode polarization model that provides a physical explanation of the effect of electrolyte concentration and mobility, electrode spacing, and frequency. Although the model properly predicts the undesired phenomenon, the low frequency scaling, often used to identify electrode polarization effects, is incorrect. The apparent dielectric constant actually follows an ω? 2 frequency dependence for ω/κ2D ? 1, where κ? 1 is the Debye length and D is an average ion diffusion coefficient. Strictly speaking, the predicted scaling with exponent ? 1.5 is applicable only for sufficiently high frequencies, where electrode polarization is insignificant. This letter is intended to help clarify matters: the asymptotic behavior of the polarization model is examined, and the approximate expressions representing the real part of the complex dielectric constant of a parallel plate cell containing electrolyte solutions or colloidal suspensions are discussed.  相似文献   

20.
Ion conduction and polymer dynamics of homogeneous mixtures of poly(2-vinylpyridine) (P2VPy) with 0.1 to 10 mol % lithium perchlorate (LiClO(4)) were investigated using broadband dielectric spectroscopy. Interpretation of the relaxation behavior was assisted by findings from differential scanning calorimetry, Fourier transform infrared spectroscopy, dynamic mechanical analysis, and wide-angle and small-angle X-ray scattering experiments. Five dielectric relaxations were observed: a local beta-process in the glassy state, a segmental relaxation, a slow segmental process, an ion-mode relaxation, and electrode polarization. The local P2VPy beta-relaxation was strongly suppressed with increasing LiClO(4) content arising from the formation of transient crosslinks, which lead to a subsequent decrease in the number of free pyridine groups and/or a reduction in the local free volume in the presence of LiClO(4). Ion conduction at low LiClO(4) concentrations (<10 mol %) is governed by the diffusion of anions through the matrix, which is strongly coupled with the segmental relaxation. At relatively high LiClO(4) concentration (10 mol %), partial decoupling between ion motion and the segmental relaxation was observed, leading to increased conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号