首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bao Z  Ng KY  Yam VW  Ko CC  Zhu N  Wu L 《Inorganic chemistry》2008,47(19):8912-8920
A series of photochromic spirooxazine-containing zinc(II) diimine bis-thiolate complexes were successfully synthesized, and their photophysical and photochromic properties were studied. The X-ray crystal structure of complex 1a has also been determined. Upon excitation by UV light at 330 nm, all the ligands and complexes exhibit photochromic behavior. The thermal bleaching kinetics of the ligands and the complexes were studied in dimethylformamide at various temperatures. The photochemical quantum yields for the photochromic reactions of the ligands and complexes were also determined.  相似文献   

2.
Two ligands, bis(benzimidazol-2-ylmethyl) aniline (bba) and bis(N-methyl-benzimidazol-2-ylmethyl) aniline (Mebba), and their transition metal complexes [Zn(bba)(Br)2]·2DMF (1) and [Cu(Mebba)(Br)2]·2DMF (2) have been synthesized and characterized by elemental analyses, molar conductivities, UV–vis spectra, IR spectra, NMR spectroscopy, and X-ray crystallography. The structure around Zn(II) can be described as distorted tetrahedral. Complex 2 can be described as distorted trigonal bipyramidal. Cyclic voltammograms of 2 indicate a quasireversible Cu2+/Cu+ couple. Additionally, the antioxidant activities of the free ligands and their complexes were determined by the superoxide and hydroxyl radical scavenging methods in vitro. Complexes 1 and 2 possess potent hydroxyl radical scavenging activity and better than standard antioxidants such as vitamin C and mannitol. Complex 2 possesses excellent superoxide radical activity.  相似文献   

3.
Two types of mixed-ligand complexes, i.e. [M(phen)2 (dip)]2+ and [M(phen)(dip)2]2+ (M = iron(II) and nickel(II); phen = 1,10-phenanthroline and dip = 4,7-diphenyl-1,10-phenanthroline) have been prepared from their related tris-complexes, [M(phen)3]2+ by ligand substitution, and isolated by semi-preparative HPLC. Elemental and chromatographic analyses confirm the purity of the isolated complexes while u.v./vis and i.r. spectra were used to identify and characterize them. 1H-n.m.r. and room temperature Mössbauer spectra of the iron(III) complexes were also measured and the results are discussed. In addition, our preliminary results on hypochromicity in the MLCT band and circular dihroism (CD) emerging in the u.v./vis region upon addition of CT(calf thymus)-DNA to the racemic complexes indicated that the iron(II) mixed-ligand complexes interact with CT-DNA.  相似文献   

4.
The redox properties of a series of [Ru(phen)2(py)X]n+ cations (X = pyridine, NH3, Cl, Br, I, CN, SCN, N3 and NO2) have been investigated in acctonitrile. Two reversible reduction steps are seen at ? 1.35 and ? 1.6 V vs Ag/AgCl; the invariance of these processes with X-group is indicative of electron addition to molecular orbitals mainly of phenanthroline ligand π* origin. Irreversible multi-electron reductions follow below ? 2.20 V. The Ru(II)/Ru(III) couple is seen as a reversible wave near + 0.8 V vs the normal hydrogen electrode, from calibration with ferrocene, except in the cases of the NO2 and SCN complexes, where rapid reactions involving these ligands occur.  相似文献   

5.
6.
7.
Two d10 group 12 metal complexes, 2-(2-methoxyphenyl)-1,10-phenanthroline zinc dichloride (2a) and 2-(2-methoxyphenyl)-1,10-phenanthroline mercury dichloride (2b) were synthesized and characterized by IR, 1H and 13C NMR as well as elemental analysis. Structure of 2b in the solid state was determined by single-crystal X-ray crystallography, revealing that 2b is four-coordinate in a distorted tetrahedral geometry with the methoxy group uncoordinated. Luminescent properties of 2a and 2b in solution and the solid state were studied.  相似文献   

8.
9.
10.
11.
12.
13.
In order to monitor the progression of the synthesis and the separation of novel mixed-ligand iron complexes containing 1,10-phenanthroline, 1,10-phenanthroline-5,6-dione, and NCS- as ligands all products were mass analyzed by electrospray ionization ion trap MS/MS. The spectra of methanol (MeOH), acetonitrile (ACN), water, and ethanol (EtOH) solutions were collected and the results were compared. It was detected under applied electrospray ionization mass spectrometry (ESI-MS) conditions that MeOH, water, and EtOH formed solvent clusters around the free or complexed 1,10-phenanthroline-5,6-dione. Owing to the solvent-ligand hydrogen-bond formation, the solvent-ligand clusters were formed in the polar protic solvents. The number of protic solvent molecules per complex ion in cluster depended on the number of 1,10-phenanthroline-5,6-dione ligands in the complex ion. Unlike MeOH, EtOH, or water, ACN was not involved in the formation of the solvent clusters with the iron complexes containing 1,10-phenanthroline-5,6-dione as ligand. We also showed that the NCS- group under certain solvent conditions served as a bidentate ligand.  相似文献   

14.
A bis-chelating ligand (1), made of two 1,10-phenanthroline subunits connected with a p-(CH2)2C6H4(CH2)2- spacer through their 4 positions, has been prepared, using Skraup syntheses and reaction of the anion of 4-methyl-7-anisyl-1,10-phenanthroline with α,α’-dibromo-p-xylene. Complexation of 1 with Ru(CH3CN)4Cl2 and subsequent reaction with 4,4’-dimethyl-2,2’-bipyridine afforded an octahedral Ru(II) tris-diimine complex, in which a well-defined axis running through the terminal anisyl substituents and the central metal has been created, as shown by an X-ray molecular structure analysis.  相似文献   

15.
The saccharinato complexes [Zn(phen)2(sac)(H2O)]sac (1) and [Zn(sac)(dmp)(H2O)](sac) (2), where phen = 1,10-phenanthroline, dmp = 2,9-dimethyl-1,10-phenanthroline, and sac =saccharinato ion/ligand, were synthesized by the reaction of [Zn(sac)2(H2O)4] · 2H2O with ligands and have been characterized by elemental analysis, IR, and 1H NMR spectroscopies. Conductivity of complexes was measured in DMSO. Compound 1 is characterized by single crystal X-ray diffraction and compared with some isomorphous zinc-saccharinate complexes reported previously. Complex 1 crystallizes in the triclinic system, space group P 1 , with Z = 2, and consists of alternating slightly distorted octahedral [Zn(phen)2(sac)(H2O)]+ and noncoordinated saccharinate. The zinc bound aqua is hydrogen bonded to an oxygen of carbonyl in the saccharinate ligand and the SO2 group in the saccharinate counter-ion from an adjacent molecule. Intermolecular and intramolecular hydrogen bonds and C–H ··· O and C–H ··· N short contacts lead to a 3-D network.  相似文献   

16.
17.
The cobalt, nickel, copper and zinc atoms in bis(1,10-phenanthroline)bis(salicylato-O)metal(II) monomeric octahedral complexes [M(Hsal)2(phen)2nH2O, (M: Co(II), n=1; Cu(II), n=1.5 and Ni(II), Zn(II), n=2) are coordinated by the salicylato monoanion (Hsal) through the carboxyl oxygen in a monodentate fashion and by the 1,10-phenanthroline (phen) molecule through the two amine nitrogen atoms in a bidentate chelating manner. On the basis of the DTGmax, the thermal stability of the hydrated complexes follows order: Ni(II) (149°C)>Co(II) (134°C)>Zn(II) (132°C)>Cu(II) (68°C) in static air atmosphere. In the second stage, the pyrolysis of the anhydrous complexes takes place. The third stage of decomposition is associated with a strong exothermic oxidation process (DTA curves: 410, 453, 500 and 450°C for the Co(II), Ni(II), Cu(II) and Zn(II) complexes, respectively). The final decomposition products, namely CoO, NiO, CuO and ZnO, were identified by IR spectroscopy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
D. C. polarography and cyclic voltammetry were used for investigating the reduction processes of the tris(1,10-phenanthroline)cobalt(II) and bis(2,9-dimethyl-1, 10-phenanthroline)-cobalt(II) perchlorates in 0.1 M solutions of tetraethylammonium perchlorate in acetonitrile. The first complex gave a four-step reduction wave; the first two steps were found to be diffusion controlled and reversible reductions from Co(phen)+ to Co(phen)3+ to Co(phen) to Co(phen;) occured. The second complex gave a six-step reduction wave; the first three steps were found to be diffusion controlled and were to be considered as successive reversible reductions from Co(2, 9dm-phen)+ to Co(2, 9dmphen), from Co(2, 9dmphen) to Co(2, 9dmphen)2 and from Co(2, 9dmphen)2 to Co(2, 9dmphen).  相似文献   

19.
The 1,10-phenanthroline (phen) complexes of Co(II), Ni(II), Cu(II) and Cd(II) orotates were synthesized and characterized by elemental analysis, magnetic susceptibility, spectral methods (UV-vis and FTIR) and thermal analysis techniques (TG, DTG and DTA). The Co(II), Ni(II), Cu(II) and Cd(II) ions in diaquabis(1,10-phenanthroline)metal(II) diorotate octahedral complexes [M(H2O)2(phen)2](H2Or)2·nH2O (M=Co(II), n=2.25; Ni(II), n=3; Cu(II) and Cd(II), n=2) are coordinated by two aqua ligands and two moles of phen molecules as chelating ligands through their two nitrogen atoms. The monoanionic orotate behaves as a counter ion in the complexes. On the basis of the first DTGmax, the thermal stability of the hydrated complexes follows the order: Cd(II), 68°C 68°C  相似文献   

20.
The new diimine ligand 3,8-di-n-pentyl-4,7-di(phenylethynyl)-1,10-phenanthroline (1) was used for the synthesis of a range of Pt(II) complexes, viz.[Pt(1)Cl2], [Pt(1)(C triple bond C-Ph)2], [Pt(1)(C triple bond C-Fc)2] and [Pt(1)(C triple bond C-p-C6H4-C triple bond C-Fc)2](Fc = ferrocenyl). Crystal structure analyses were performed for [Pt(1)Cl2] and [Pt(1)(C triple bond C-Ph)2] and revealed that the di(acetylide)pi-tweezer of the latter binds a molecule of chloroform through C-H...pi hydrogen bonds. The redox and optical properties of 1 and its complexes were investigated by (spectro-)electrochemistry, UV-Vis and luminescence spectroscopy, and an energy level diagram was derived for [Pt(1)(C triple bond C-Fc)2] and related compounds on the basis of the data collected. The ferrocenyl-substituted Pt(II) complexes are donor-sensitiser assemblies. Intramolecular quenching of the photoexcited Pt(II) diimine unit leads to very short luminescence lifetimes for [Pt(1)(C triple bond C-p-C(6)H(4)-C triple bond C-Fc)2](2 ns) and [Pt(1)(C triple bond C-Fc)2](0.3 ns), as opposed to [Pt(1)(C triple bond C-Ph)2](0.7 micros). Excimer formation has been observed for [Pt(1)(C triple bond C-Ph)(2)] at room temperature in dichloromethane and at low temperatures in frozen glassy dichloromethane and 2-methyltetrahydrofuran solution, but not in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号