首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IfG is a finite group, we define its prime graph Г(G), as follows: its vertices are the primes dividing the order ofG and two verticesp, q are joined by an edge, if there is an element inG of orderpq. We denote the set of all the connected components of the graph Г(G) by T(G)=i(G), fori = 1,2, …,t(G)}, where t(G) is the number of connected components of Г(G). We also denote by π(n) the set of all primes dividingn, wheren is a natural number. Then ¦G¦ can be expressed as a product of m1, m2, …, mt(G), where mi’s are positive integers with π(mi) = πi. Thesem i s are called the order components ofG. LetOC(G) := {m 1,m 2, …,m t (G)} be the set of order components ofG. In this paper we prove that, if G is a finite group andOC(G) =OC(M), where M is a finite simple group witht(M) ≥ 2, thenG is neither Frobenius nor 2-Frobenius.  相似文献   

2.
If G is a graph with p vertices and at least one edge, we set φ (G) = m n max |f(u) ? f(v)|, where the maximum is taken over all edges uv and the minimum over all one-to-one mappings f : V(G) → {1, 2, …, p}: V(G) denotes the set of vertices of G.Pn will denote a path of length n whose vertices are integers 1, 2, …, n with i adjacent to j if and only if |i ? j| = 1. Pm × Pn will denote a graph whose vertices are elements of {1, 2, …, m} × {1, 2, …, n} and in which (i, j), (r, s) are adjacent whenever either i = r and |j ? s| = 1 or j = s and |i ? r| = 1.Theorem.If max(m, n) ? 2, thenφ(Pm × Pn) = min(m, n).  相似文献   

3.
A tree is called starlike if it has exactly one vertex of degree greater than two. In [4] it was proved that two starlike treesG andH are cospectral if and only if they are isomorphic. We prove here that there exist no two non-isomorphic Laplacian cospectral starlike trees. Further, letG be a simple graph of ordern with vertex setV(G)={1,2, …,n} and letH={H 1,H 2, ...H n } be a family of rooted graphs. According to [2], the rooted productG(H) is the graph obtained by identifying the root ofH i with thei-th vertex ofG. In particular, ifH is the family of the paths $P_{k_1 } , P_{k_2 } , ..., P_{k_n } $ with the rooted vertices of degree one, in this paper the corresponding graphG(H) is called the sunlike graph and is denoted byG(k 1,k 2, …,k n ). For any (x 1,x 2, …,x n ) ∈I * n , whereI *={0,1}, letG(x 1,x 2, …,x n ) be the subgraph ofG which is obtained by deleting the verticesi 1, i2, …,i j ∈ V(G) (0≤j≤n), provided that $x_{i_1 } = x_{i_2 } = ... = x_{i_j } = 0$ . LetG(x 1,x 2,…, x n] be the characteristic polynomial ofG(x 1,x 2,…, x n ), understanding thatG[0, 0, …, 0] ≡ 1. We prove that $$G[k_1 , k_2 ,..., k_n ] = \Sigma _{x \in ^{I_ * ^n } } \left[ {\Pi _{i = 1}^n P_{k_i + x_i - 2} (\lambda )} \right]( - 1)^{n - (\mathop \Sigma \limits_{i = 1}^n x_i )} G[x_1 , x_2 , ..., x_n ]$$ where x=(x 1,x 2,…,x n );G[k 1,k 2,…,k n ] andP n (γ) denote the characteristic polynomial ofG(k 1,k 2,…,k n ) andP n , respectively. Besides, ifG is a graph with λ1(G)≥1 we show that λ1(G)≤λ1(G(k 1,k 2, ...,k n )) < for all positive integersk 1,k 2,…,k n , where λ1 denotes the largest eigenvalue.  相似文献   

4.
Let G be a finitely presented group given by its pre-abelian presentation <X1,…,Xm; Xe11ζ1,…,Xemmζ,ζm+1,…>, where ei≥0 for i = 1,…, m and ζj?G′ for j≥1. Let N be the subgroup of G generated by the normal subgroups [xeii, G] for i = 1,…, m. Then Dn+2(G)≡γn+2(G) (modNG′) for all n≥0, where G” is the second commutator subgroup of Gn+2(G) is the (n+2)th term of the lower central series of G and Dn+2(G) = G∩(1+△n+2(G)) is the (n+2)th dimension subgroup of G.  相似文献   

5.
Summary. The solution of the rectangular m ×n m \times n generalized bisymmetry equation¶¶F(G1(x11,...,x1n),..., Gm(xm1,...,xmn))     =     G(F1(x11,..., xm1),...,  Fn(x1n,...,xmn) ) F\bigl(G_1(x_{11},\dots,x_{1n}),\dots,\ G_m(x_{m1},\dots,x_{mn})\bigr) \quad = \quad G\bigl(F_1(x_{11},\dots, x_{m1}),\dots, \ F_n(x_{1n},\dots,x_{mn}) \bigr) (A)¶is presented assuming that the functions F, Gj, G and Fi (j = 1, ... , m , i = 1, ... , n , m S 2, n S 2) are real valued and defined on the Cartesian product of real intervals, and they are continuous and strictly monotonic in each real variable. Equation (A) is reduced to some special bisymmetry type equations by using induction methods. No surjectivity assumptions are made.  相似文献   

6.
Given k directed graphs G1,…,Gk the Ramsey number R(G1,…, Gk) is the smallest integer n such that for any partition (U1,…,Uk) of the arcs of the complete symmetric directed graph Kn, there exists an integer i such that the partial graph generated by U1 contains G1 as a subgraph. In the article we give a necessary and sufficient condition for the existence of Ramsey numbers, and, when they exist an upper bound function. We also give exact values for some classes of graphs. Our main result is: R(Pn,….Pnk-1, G) = n1…nk-1 (p-1) + 1, where G is a hamltonian directed graph with p vertices and Pni denotes the directed path of length nt  相似文献   

7.
The Ramsey number r(G, H) is evaluated exactly in certain cases in which both G and H are complete multipartite graphs K(n,1, n2, …. nk). Specifically, each of the following cases is handled whenever n is sufficiently large: r(K(1, m1, …. mk), K(1, n)), r(K(1, m), K(n1, …. nk, n)), provided m ≧ 4, and r(K(1, 1, m), K(nk, …, nk, n)).  相似文献   

8.
LetG be a graph satisfying x(G) = k. The following problem is considered: WhichG have the property that, if n is large enough, the Ramsey numberr(G, T) has the value (k — 1)(n — 1) + 1 for all treesT onn vertices? It is shown thatG has this property if and only if for somem, G is a subgraph of bothL k,m andM K.m , whereL k,m andM k,m are two particulark-chromatic graphs. Indeed, it is shown thatr(L k,m ,M k,m ,T n ) = (k — 1)(n — 1) + 1 whenn is large.  相似文献   

9.
A class of antimagic join graphs   总被引:1,自引:0,他引:1  
A labeling f of a graph G is a bijection from its edge set E(G) to the set {1, 2, . . . , |E(G)|}, which is antimagic if for any distinct vertices x and y, the sum of the labels on edges incident to x is different from the sum of the labels on edges incident to y. A graph G is antimagic if G has an f which is antimagic. Hartsfield and Ringel conjectured in 1990 that every connected graph other than K 2 is antimagic. In this paper, we show that if G 1 is an n-vertex graph with minimum degree at least r, and G 2 is an m-vertex graph with maximum degree at most 2r-1 (m ≥ n), then G1 ∨ G2 is antimagic.  相似文献   

10.
《Quaestiones Mathematicae》2013,36(4):383-398
Abstract

A set B of vertices of a graph G = (V,E) is a k-maximal independent set (kMIS) if B is independent but for all ?-subsets X of B, where ? ? k—1, and all (? + 1)-subsets Y of V—B, the set (B—X) u Y is dependent. A set S of vertices of C is a k-maximal clique (kMc) of G iff S is a kMIS of [Gbar]. Let βk, (G) (wk(G) respectively) denote the smallest cardinality of a kMIS (kMC) of G—obviously βk(G) = wk([Gbar]). For the sequence m1 ? m2 ?…? mn = r of positive integers, necessary and sufficient conditions are found for a graph G to exist such that wk(G) = mk for k = 1,2,…,n and w(G) = r (equivalently, βk(G) = mk for k = 1,2,…,n and β(G) = r). Define sk(?,m) to be the largest integer such that for every graph G with at most sk(?,m) vertices, βk(G) ? ? or wk(G) ? m. Exact values for sk(?,m) if k ≥ 2 and upper and lower bounds for s1(?,m) are de termined.  相似文献   

11.
Let C(v1, …,vn) be a system consisting of a circle C with chords v1, …,vn on it having different endpoints. Define a graph G having vertex set V(G) = {v1, …,vn} and for which vertices vi and vj are adjacent in G if the chords vi and vj intersect. Such a graph will be called a circle graph. The chords divide the interior of C into a number of regions. We give a method which associates to each such region an orientation of the edges of G. For a given C(v1, …,vn) the number m of different orientations corresponding to it satisfies q + 1 ≤ mn + q + 1, where q is the number of edges in G. An oriented graph obtained from a diagram C(v1, …,vn) as above is called an oriented circle graph (OCG). We show that transitive orientations of permutation graphs are OCGs, and give a characterization of tournaments which are OCGs. When the region is a peripheral one, the orientation of G is acyclic. In this case we define a special orientation of the complement of G, and use this to develop an improved algorithm for finding a maximum independent set in G.  相似文献   

12.
For a vertex set {u 1,u 2,...,u k} of a graphG withn vertices, let $$\begin{gathered} s(G;\{ u_1 ,u_2 ,...,u_k \} ) = \sum {1 \leqslant i< j \leqslant k\left| {N(u_i ) \cup N(u_j )} \right|,} \hfill \\ NC_k = \min \{ s(G;\{ x_1 ,...,x_k \} )\} :\{ x_1 ,...,x_k \} is an independent set\} . \hfill \\ \end{gathered} $$ In this paper, we shall prove that ifG is 3-connected andNC 4≥3n, thenG is either a hamiltonian or Petersen graph. This generalizes some results on the neighborhood union conditions for hamiltonian graphs.  相似文献   

13.
The symbol C(m1 n 1m2 n 2...ms n s) denotes a 2-regular graph consisting ofn i cycles of lengthm i , i=1, 2,…,s. In this paper, we give some construction methods of cyclic(K v ,G)-designs, and prove that there exists a cyclic(K v , G)-design whenG=C((4m 1) n 1(4m 2) n 2...(4m s ) n s andv ≡ 1 (mod 2¦G¦).  相似文献   

14.
The tree partition number of an r‐edge‐colored graph G, denoted by tr(G), is the minimum number k such that whenever the edges of G are colored with r colors, the vertices of G can be covered by at most k vertex‐disjoint monochromatic trees. We determine t2(K(n1, n2,…, nk)) of the complete k‐partite graph K(n1, n2,…, nk). In particular, we prove that t2(K(n, m)) = ? (m‐2)/2n? + 2, where 1 ≤ nm. © 2004 Wiley Periodicals, Inc. J Graph Theory 48: 133–141, 2005  相似文献   

15.
Let m(G,k) be the number of k-matchings in the graph G. We write G1G2 if m(G1, k) ≤ m(G2, k) for all k = 1, 2,…. A tree is said to be starlike if it possesses exactly one vertex of degree greater than two. The relation T1T2 is shown to hold for various pairs of starlike trees T1, T2. The starlike trees (with a given number of vertices), extremal with respect to the relation ⪯, are characterized.  相似文献   

16.
Let R = (r1,…, rm) and S = (s1,…, sn) be nonnegative integral vectors, and let U(R, S) denote the class of all m × n matrices of 0's and 1's having row sum vector R and column sum vector S. An invariant position of U(R, S) is a position whose entry is the same for all matrices in U(R, S). The interchange graph G(R, S) is the graph where the vertices are the matrices in U(R, S) and where two matrices are joined by an edge provided they differ by an interchange. We prove that when 1 ≤ rin ? 1 (i = 1,…, m) and 1 ≤ sjm ? 1 (j = 1,…, n), G(R, S) is prime if and only if U(R, S) has no invariant positions.  相似文献   

17.
The necessary conditions for the existence of odd harmonious labelling of graph are obtained. A cycle C n is odd harmonious if and only if n≡0 (mod 4). A complete graph K n is odd harmonious if and only if n=2. A complete k-partite graph K(n 1,n 2,…,n k ) is odd harmonious if and only if k=2. A windmill graph K n t is odd harmonious if and only if n=2. The construction ways of odd harmonious graph are given. We prove that the graph i=1 n G i , the graph G(+r 1,+r 2,…,+r p ), the graph $\bar{K_{m}}+_{0}P_{n}+_{e}\bar{K_{t}}$ , the graph G∪(X+∪ k=1 n Y k ), some trees and the product graph P m ×P n etc. are odd harmonious. The odd harmoniousness of graph can be used to solve undetermined equation.  相似文献   

18.
A simple, connected even graph G with vertex set V(G) and edge set E(G) is said to be ADCT (Arbitrarily Decomposable into Closed Trails) if for any collection of positive integers x 1, x 2,...,x m with and x i ≥ 3 for 1 ≤ im, there exists a decomposition of G into closed trails (circuits) of lengths x 1, x 2,...,x m . In this note we construct an 8-regular ADCT graph on 6n vertices, for each each n ≥ 3. On the other hand, we also show that there are only finitely many 4-regular graphs which are ADCT. Received July 26, 2006. Final version received: March 5, 2008.  相似文献   

19.
The clique graph K(G) of a graph is the intersection graph of maximal cliques of G. The iterated clique graph Kn(G) is inductively defined as K(Kn?1(G)) and K1(G) = K(G). Let the diameter diam(G) be the greatest distance between all pairs of vertices of G. We show that diam(Kn(G)) = diam(G) — n if G is a connected chordal graph and n ≤ diam(G). This generalizes a similar result for time graphs by Bruce Hedman.  相似文献   

20.
Let G be a graph and n ≥ 2 an integer. We prove that the following are equivalent: (i) there is a partition (V1,…,Vm) of V (G) such that each Vi induces one of stars K1,1,…,K1,n, and (ii) for every subset S of V(G), G\ S has at most n|S| components with the property that each of their blocks is an odd order complete graph. © 1997 John Wiley & Sons, Inc. J Graph Theory 25: 185–190, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号