首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interfacial structure between the muscovite (001) surface and aqueous solutions containing monovalent cations (3 × 10(-3) m Li(+), Na(+), H(3)O(+), K(+), Rb(+), or Cs(+), or 3 × 10(-2) m Li(+) or Na(+)) was measured using in situ specular X-ray reflectivity. The element-specific distribution of Rb(+) was also obtained with resonant anomalous X-ray reflectivity. The results demonstrate complex interdependencies among adsorbed cation coverage and speciation, interfacial hydration structure, and muscovite surface relaxation. Electron-density profiles of the solution near the surface varied systematically and distinctly with each adsorbed cation. Observations include a broad profile for H(3)O(+), a more structured profile for Li(+) and Na(+), and increasing electron density near the surface because of the inner-sphere adsorption of K(+), Rb(+), and Cs(+) at 1.91 ± 0.12, 1.97 ± 0.01, and 2.26 ± 0.01 ?, respectively. Estimated inner-sphere coverages increased from ~0.6 to 0.78 ± 0.01 to ~0.9 per unit cell area with decreasing cation hydration strength for K(+), Rb(+), and Cs(+), respectively. Between 7 and 12% of the Rb(+) coverage occurred as an outer-sphere species. Systematic trends in the vertical displacement of the muscovite lattice were observed within ~40 ? of the surface. These include a <0.1 ? shift of the interlayer K(+) toward the interface that decays into the crystal and an expansion of the tetrahedral-octahedral-tetrahedral layers except for the top layer in contact with solution. The distortion of the top tetrahedral sheet depends on the adsorbed cation, ranging from an expansion (by ~0.05 ? vertically) in 3 × 10(-3)m H(3)O(+) to a contraction (by ~0.1 ?) in 3 × 10(-3) m Cs(+). The tetrahedral tilting angle in the top sheet increases by 1 to 4° in 3 × 10(-3) m Li(+) or Na(+), which is similar to that in deionized water where the adsorbed cation coverages are insufficient for full charge compensation.  相似文献   

2.
With ab initio MP2 computational methods, a theoretical study has been carried out to characterize the interaction between aliphatic cyclic hydrocarbons, as models of molecular hydrocarbon monolayers, with cations (Li(+), Na(+), and K(+)), anions (F(-), Cl(-), and Br(-)), and both simultaneously in opposite faces of the hydrocarbons. In addition, the energetic barrier for the cation crossing through the hydrocarbon ring has been calculated. The hydrocarbons chosen for this study are cyclohexane (C(6)H(12)) and adamantane (C(10)H(16)). The energies obtained for the M(+):hydrocarbon:X(-) complexes indicate positive cooperativity in the cases where the hydrocarbon is cyclohexane while diminutive effects are found in the adamantane complexes. The density functional theory-symmetry adapted perturbation theory analysis of the interaction energies shows that the most important term in the complexes with cations is the induction, while in the complexes with anion and with cations and anions simultaneously the most important term is the repulsion-exchange one. The electron density of the complexes has been analyzed using the atoms in molecules methodology and provides some insight to the electron transfer within the complexes.  相似文献   

3.
Relative interaction strengths between cations (X = Li (+), Na (+), K (+), NH 4 (+)) and anionic carboxylate groups of acetate and glycine in aqueous solution are determined. These model systems mimic ion pairing of biologically relevant cations with negatively charged groups at protein surfaces. With oxygen 1s X-ray absorption spectroscopy, we can distinguish between spectral contributions from H 2O and carboxylate, which allows us to probe the electronic structure changes of the atomic site of the carboxylate group being closest to the countercation. From the intensity variations of the COO (-) aq O 1s X-ray absorption peak, which quantitatively correlate with the change in the local partial density of states from the carboxylic site, interactions are found to decrease in the sequence Na (+) > Li (+) > K (+) > NH 4 (+). This ordering, as well as the observed bidental nature of the -COO (-) aq and X (+) aq interaction, is supported by combined ab initio and molecular dynamics calculations.  相似文献   

4.
Interactions between metal ions and amino acids are common both in solution and in the gas phase. The effect of metal ions and water on the structure of L-arginine is examined. The effects of metal ions (Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ni(2+), Cu(2+), and Zn(2+)) and water on structures of Arg x M(H2O)m , m = 0, 1 complexes have been determined theoretically by employing the density functional theories (DFT) and using extended basis sets. Of the three stable complexes investigated, the relative stability of the gas-phase complexes computed with DFT methods (with the exception of K(+) systems) suggests metallic complexes of the neutral L-arginine to be the most stable species. The calculations of monohydrated systems show that even one water molecule has a profound effect on the relative stability of individual complexes. Proton dissociation enthalpies and Gibbs energies of arginine in the presence of the metal cations Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ni(2+), Cu(2+), and Zn(2+) were also computed. Its gas-phase acidity considerably increases upon chelation. Of the Lewis acids investigated, the strongest affinity to arginine is exhibited by the Cu(2+) cation. The computed Gibbs energies DeltaG(o) are negative, span a rather broad energy interval (from -150 to -1500 kJ/mol), and are appreciably lowered upon hydration.  相似文献   

5.
The sequential hydration energies and entropies with up to four water molecules were obtained for MXM(+) = NaFNa(+), NaClNa(+), NaBrNa(+), NaINa(+), NaNO(2)Na(+), NaNO(3)Na(+), KFK(+), KBrK(+), KIK(+), RbIRb(+), CsICs(+), NH(4)BrNH(4)(+), and NH(4)INH(4)(+) from the hydration equilibria in the gas phase with a reaction chamber attached to a mass spectrometer. The MXM(+) ions as well as (MX)(m)M(+) and higher charged ions such as (MX)(m)M(2)(2+) were obtained with electrospray. The observed trends of the hydration energies of MXM(+) with changing positive ion M(+) or the negative ion X(-) could be rationalized on the basis of simple electrostatics. The most important contribution to the (MXM-OH(2))(+) bond is the interaction of the permanent and induced dipole of water with the positive charge of the nearest-neighbor M(+) ion. The repulsion due to the water dipole and the more distant X(-) has a much smaller effect. Therefore, the bonding in (MXM-OH(2))(+) for constant M and different X ions changes very little. Similarly, for constant X and different M, the bonding follows the hydration energy trends observed for the naked M(+) ions. The sequential hydration bond energies for MXM(H(2)O)(n)(+) decrease with n in pairs, where for n = 1 and n = 2 the values are almost equal, followed by a drop in the values for n = 3 and n = 4, that again are almost equal. The hydration energies of (MX)(m)M(+) decrease with m. The mass spectra with NaCl, obtained with electrospray and observed in the absence of water vapor, show peaks of unusually high intensities (magic numbers) at m = 4, 13, and 22. Experiments with variable electrical potentials in the mass spectrometer interface showed that some but not all of the ion intensity differentiation leading to magic numbers is due to collision-induced decomposition of higher mass M(MX)(m)(+) and M(2)(MX)(m)(2+) ions in the interface. However, considerable magic character is retained in the absence of excitation. This result indicates that the magic ions are present also in the saturated solution of the droplets produced by electrospray and are thus representative of particularly stable nanocrystals in the saturated solution. Hydration equilibrium determinations in the gas phase demonstrated weaker hydration of the magic ion (NaCl)(4)Na(+).  相似文献   

6.
Polycyclic aromatic hydrocarbons are model systems for studying the mechanisms of lithium storage in carbonaceous materials. In this work, Li complexes of naphthalene, pyrene, perylene, and coronene were synthesized in a supersonic metal-cluster beam source and studied by zero-electron-kinetic-energy (ZEKE) electron spectroscopy and density functional theory calculations. The adiabatic ionization energies of the neutral complexes and frequencies of up to nine vibrational modes in the singly charged cations were determined from the ZEKE spectra. The metal-ligand bond energies of the neutral complexes were obtained from a thermodynamic cycle. Preferred Li∕Li(+) binding sites with the aromatic molecules were determined by comparing the measured spectra with theoretical calculations. Li and Li(+) prefer the ring-over binding to the benzene ring with a higher π-electron content and aromaticity. Although the ionization energies of the Li complexes show no clear correlation with the size of the aromatic molecules, the metal-ligand bond energies increase with the extension of the π-electron network up to perylene, then decrease from perylene to coronene. The trends in the ionization and metal-ligand bond dissociation energies of the complexes are discussed in terms of the orbital energies, local quadrupole moments, and polarizabilities of the free ligands and the charge transfer between the metal atom and aromatic molecules.  相似文献   

7.
Performance of dye-sensitized solar cells (DSCs) was investigated depending on the compositions of the electrolyte, i.e., the electrolyte with a different cation such as Li(+), tetra-n-butylammonium (TBA(+)), or 1,2-dimethyl-3-propylimidazolium (DMPIm(+)) in various concentrations, with and without 4-tert-butylpyridine (tBP), and with various concentrations of the I(-)/I(3)(-) redox couple. Current-voltage characteristics, electron lifetime, and electron diffusion coefficient were measured to clarify the effects of the constituents in the electrolyte on the charge recombination kinetics in the DSCs. Shorter lifetimes were found for the DSCs employing adsorptive cations of Li(+) and DMPIm(+) than for a less-adsorptive cation of TBA(+). On the other hand, the lifetimes were not influenced by the concentrations of the cations in the solutions. Under light irradiation, open-circuit voltages of DSCs decreased in the order of TBA(+)> DMPIm(+) > Li(+), and also decreased with the increase of [Li(+)]. The decreases of open-circuit voltage (V(oc)) were attributed to the positive shift of the TiO(2) conduction band potential (CBP) by the surface adsorption of DMPIm(+) and Li(+). These results suggest that the difference of the free energies between that of the electrons in the TiO(2) and of I(3)(-) has little influence on the electron lifetimes in the DSCs. The shorter lifetime with the adsorptive cations was interpreted with the thickness of the electrical double layer formed by the cations, and the concentration of I(3)(-) in the layer, i.e., TBA(+) formed thicker double layer resulting in lower concentration of I(3)(-) on the surface of the TiO(2). The addition of 4-tert-butylpyridine (tBP) in the presence of Li(+) or TBA(+) showed no significant influence on the lifetime. The increase of V(oc) by the addition of tBP into the electrolyte containing Li(+) and the I(-)/I(3)(-) redox couple was mainly attributed to the shift of the CBP back to the negative potential by reducing the amount of adsorbed Li cations.  相似文献   

8.
Electrolyte ions differ in size leading to the possibility that the distance of closest approach to a charged surface differs for different ions. So far, ions bound as outersphere complexes have been treated as point charges present at one or two electrostatic plane(s). However, in a multicomponent system, each electrolyte ion may have its own distance of approach and corresponding electrostatic plane with an ion-specific capacitance. It is preferable to make the capacitance of the compact part of the double layer a general characteristic of the solid-solution interface. A new surface structural approach is presented that may account for variation in size of electrolyte ions. In this approach, the location of the charge of the outersphere surface complexes is described using the concept of charge distribution in which the ion charge is allowed to be distributed over two electrostatic planes. It was shown that the concept can successfully describe the pH dependent proton binding and the shift in the isoelectric point (IEP) in the presence of variety of monovalent electrolyte ions, including Li(+), Na(+), K(+), Cs(+), Cl(-), NO(-)(3), and ClO(-)(4) with a common set of parameters. The new concept also sheds more light on the degree of hydration of the ions when present as outersphere complexes. Interpretation of the charge distribution values obtained shows that Cl(-) ions are located relatively close to the surface. The large alkali ions K(+), Cs(+), and Rb(+) are at the largest distance. Li(+), Na(+), NO(-)(3), and ClO(-)(4) are present at intermediate positions.  相似文献   

9.
The effect of Cu doping on the properties of small gold cluster cations is investigated in a joint experimental and theoretical study. Temperature-dependent Ar tagging of the clusters serves as a structural probe and indicates no significant alteration of the geometry of Au(n) (+) (n = 1-16) upon Cu doping. Experimental cluster-argon bond dissociation energies are derived as a function of cluster size from equilibrium mass spectra and are in the 0.10-0.25 eV range. Near-UV and visible light photodissociation spectroscopy is employed in conjunction with time-dependent density functional theory calculations to study the electronic absorption spectra of Au(4-m)Cu(m) (+) (m = 0, 1, 2) and their Ar complexes in the 2.00-3.30 eV range and to assign their fragmentation pathways. The tetramers Au(4) (+), Au(4) (+)[middle dot]Ar, Au(3)Cu(+), and Au(3)Cu(+)[middle dot]Ar exhibit distinct optical absorption features revealing a pronounced shift of electronic excitations to larger photon energies upon substitution of Au by Cu atoms. The calculated electronic excitation spectra and an analysis of the character of the optical transitions provide detailed insight into the composition-dependent evolution of the electronic structure of the clusters.  相似文献   

10.
Although cation-π interactions commonly involve aromatic or heteroaromatic rings as the source of π-electrons, isolated and nonconjugated olefins are equally effective donors of π-electron density. Previous comparisons of these π-electron sources have indicated that the net energy of the binding interactions is not a simple additive function of the number of π-bonds involved. For instance, the enthalpy of binding (ΔH°) of Li(+), Na(+), or K(+) cations to two ethylene molecules or to one benzene molecule is approximately the same, despite the 4:6 ratio of π-electrons involved. This present density functional theory study indicates that geometric factors can partially account for the proportionally greater interaction energies of olefins, but whether they are symmetrically placed around the cation or grouped on one hemisphere has little effect on the binding energy. Instead, flexible ligands that permit olefinic π-electrons to be oriented more favorably toward the metal than those in rigid aromatic rings can be correlated with greater bonding. For Li(+) complexes, this appears to be an appreciable factor, although it is less significant with Na(+) and K(+) complexes. For all three cations, stronger polarization interactions with olefins compared to arenes contribute to the strength of cation-π interactions involving olefinic π-bonds.  相似文献   

11.
The geometric structures, the interaction energies, the vibrational characteristics, and the electronic structures of the complexes of the isoguanine (isoG) quintet coordinated with mono valent cations (Na(+), K(+), Rb(+), and Cs(+)) have been studied based on the nonplanar models. The geometry of the local minimum structure of the Na(+)-isoG quintet complex deviates significantly from the planar structure. The geometric characteristics of the Na(+)-isoG quintet complex support the experimental findings that Na(+) is unlikely to induce the formation of the isoG quintet-based pentaplexes. Similar to the guanine tetraplexes, the ionic selectivity of the isoG quintet-based pentaplexes is largely dominated by the hydration energy of the cations. After hydration correction, the positive value of the free energy difference for the formation of the Na(+)-isoG quintet complex (DeltaG(f)) suggests that the isoG quintet is unable to capture the hydrated Na(+). The negative values of DeltaG(f) for the K(+) and Rb(+) complexes implies that both ions have the tendency to be inserted into the isoG pentaplexes. This study suggests that, to elucidate the high Cs(+) selectivity of isoG pentaplexes, it is necessary to extend the model from the isoG quintet to the isoG decamer.  相似文献   

12.
Structural and dynamical properties of the hydration of Li(+), Na(+), and K(+) in liquid water at ambient conditions were studied by first principles molecular dynamics. Our simulations successfully captured the different hydration behavior shown by the three alkali ions as observed in experiments. The present analyses of the dependence of the self-diffusion coefficient and rotational correlation time of water on the ion concentration suggest that Li(+) (K(+)) is certainly categorized as a structure maker (breaker), whereas Na(+) acts as a weak structure breaker. An analysis of the relevant electronic structures, based on maximally localized Wannier functions, revealed that the dipole moment of H(2)O molecules in the first solvation shell of Na(+) and K(+) decreases by about 0.1 D compared to that in the bulk, due to a contraction of the oxygen lone pair orbital pointing toward the metal ion.  相似文献   

13.
An atomic force microscope (AFM) is used to study the adhesion between a silica sphere and a mica plate in pure water and solutions of monovalent cations (LiCl, NaCl, KCl, and CsCl). It is found that the adhesive force depends not only on the electrolyte concentration but also on the hydration enthalpy of cations and the contact time of the particle on the surface. Possible mechanisms by which the observed phenomena can be explained consistently are discussed extensively. It is suggested that the adhesive force is closely related to the structure of the layer of cations and water molecules adsorbed on the surfaces: the strong adhesive force is obtained when highly hydrated cations (Li(+), Na(+)) are adsorbed to form a thick but weakly adsorbed layer, while the weak adhesive force is observed when poorly hydrated cations (Cs(+), K(+)) are adsorbed to form a thin but strongly adsorbed layer. Copyright 2000 Academic Press.  相似文献   

14.
A comparative study of the effects of alkali metal ions Li(+), Na(+), K(+), Rb(+), and Cs(+) on the liquid crystalline organization of high-molecular-weight calf thymus DNA using polarized light microscopy was performed. Major differences in the behavior of Li(+) as compared to the other ions were found. Critical DNA concentration expected to exhibit anisotropic behavior was found to be the same for all the monovalent ions, except for Li(+). DNA initially showed cholesteric textures, which later changed to higher ordered columnar phase for all ions, with the cholesteric-columnar transition facilitated upon increasing the size of the counterion. For Li(+) ion, a nematic schlieren-like texture was formed initially, which after a few days changed to a highly stable (for more than 2 months) biphasic cholesteric-columnar arrangement. The observed differences between Li(+) and other alkali metal ions could be rationalized on the basis of the higher number of hydration water molecules of Li(+) and its complexation behavior. Highly stable DNA mesophases may find applications in the field of nanoelectronics, in designing biosensing units, and in DNA chips.  相似文献   

15.
The H(+) velocity map images from the ion-pair dissociation of H(2)S + hν → SH(-)(X(1)Σ(+), υ = 0, 1) + H(+) have been measured at the excitation energies 15.259, 15.395, and 15.547 eV, respectively. The experimental results show that most of the available energies are transformed into the translational energies. The angular distributions of the fragments SH(-)(X(1)Σ(+), υ = 0) indicate that the dissociation occurs via pure parallel transition with limiting anisotropy parameter of +2. Because the ion-pair dissociation usually occurs via the predissociation of Rydberg states, this suggests that the ion cores of the excited Rydberg states have linear geometries. The geometries and electronic structures of the linear H(2)S(+) have been calculated employing the quantum chemistry calculation method at the CASPT2/avqz level. The electronic structures for the ion-pair states have been calculated at the CASSCF/avtz level, which indicates that the equilibrium geometries of the ion-pair states have bent geometries.  相似文献   

16.
王进  曾凡桂  王军霞 《化学学报》2006,64(16):1654-1658
运用分子动力学(molecular dynamics, MD)方法分别研究了含有32, 64和96个水分子的Li-, Na-, K-蒙脱石层间阳离子与水分子的位置和结构. 计算结果表明蒙脱石层间阳离子位置与四面体和八面体电荷位置及离子的大小有关. 一层水合物中可以观察到三种阳离子都能和四面体电荷与八面体电荷位置分别形成内、外配位作用. 二层水合物中, 仍然可以观察到Li和Na与电荷位置的配位作用, 但是已经开始向层中其他方向扩散, 而K仍然在粘土的表面附近. 三层水合物中, Li, Na开始从电荷位置和表面分离, K也开始向层间其他方向扩散. 水分子在所有三种水合物中都分散于层间各个方向. 径向分布函数的分析结果表明层间三种阳离子组织水分子的能力不同, 水化作用随着阳离子半径的增大而减弱; 此外层中水分子的聚合程度随着水分子的增加而加强, 水分子的结构也不同于模拟的液体水分子的结构; 说明蒙脱石层间阳离子的溶剂化作用对水分子的组织起着重要的作用.  相似文献   

17.
The complete periodic series of alkali and alkaline earth cation variants (Li(+), Na(+), K(+), Rb(+), Cs(+), Mg(2+), Ca(2+), Sr(2+), and Ba(2+)) of clinoptilolite (Si : Al=5) and heulandite (Si : Al=3.5) aluminosilicate zeolites are examined by large-scale molecular dynamics utilizing a flexible SPC water and aluminosilicate force field. Calculated hydration enthalpies, radial distribution functions, and ion coordination environments are used to describe the energetic and structural components of extra-framework species while power spectra are used to examine the intermolecular dynamics. These data are correlated to evaluate the impact of ion-zeolite, ion-water, and water-zeolite interactions on the behavior of nanoconfined water. Analysis of the correlated data clearly indicates that the charge density of extra-framework cations appears to have the greatest influence on librational motions, while the anionic charge of the framework (i.e. Si:Al ratios) has a lesser impact.  相似文献   

18.
We present accurate ionization potentials (IPs) for small lithium clusters and hydrogenated lithium clusters (n=1-4), computed using coupled-cluster singles and doubles theory augmented with a perturbative correction for connected triple excitations [CCSD(T)] with the correlation-consistent weighted core-valence quadruple-zeta basis set (cc-pwCVQZ). In some cases the full CCSDT method has been used. Comparison of computed binding energies with experiment for the pure cationic lithium clusters reveals excellent agreement, demonstrating that previous discrepancies between computed and experimentally derived atomization energies for the corresponding neutral clusters are due to the use of an inaccurate experimental IP for Li(4). The experimental IP for Li(4) falls 0.43 eV below our theoretical adiabatic value of 4.74 eV, which should be a lower bound to the measured IP. Our recommended zero-point corrected adiabatic IPs for Li, Li(2), Li(3), Li(4), LiH, Li(2)H, Li(3)H, and Li(4)H are 5.39, 5.14, 4.11, 4.74, 7.69, 3.98, 4.69, and 4.05 eV, respectively. Zero-point vibrationally corrected CCSD(T) atomization energies per atom for Li(2) (+), Li(3) (+), Li(4) (+), LiH(+), Li(2)H(+), Li(3)H(+), and Li(4)H(+) are 0.64, 0.96, 0.90, 0.056, 1.62, 1.40, and 1.40 eV, respectively.  相似文献   

19.
Guanine tetraplexes are biological non-covalent systems stabilized by alkali cations. Thus, self-clustering of guanine, xanthine and hypoxanthine with alkali cations (Na(+), K(+) and Li(+)) is investigated by electrospray ionization mass spectrometry (ESI-MS) in order to provide new insights into G-quartets, hydrogen-bonded complexes. ESI assays displayed magic numbers of tetramer adducts with Na(+), Li(+) and K(+), not only for guanine, but also for xanthine bases. The optimized structures of guanine and xanthine quartets have been determined by B3LYP hybrid density functional theory calculations. Complexes of metal ions with quartets are classified into different structure types. The optimized structures obtained for each quartet explain the gas-phase results. The gas-phase binding sequence between the monovalent cations and the xanthine quartet follows the order Li(+) > Na(+) > K(+), which is consistent with that obtained for the guanine quartet in the literature. The smallest stabilization energy of K(+) and its position versus the other alkali metal ions in guanine and xanthine quartets is consistent with the fact that the potassium cation can be located between two guanine or xanthine quartets, for providing a [gua(or (xan))(8)+K](+) octamer adduct. Even if an abundant octamer adduct with K(+) for xanthine was detected by ESI-MS, it was not the case for guanine.  相似文献   

20.
A surface counterion titration method was used to monitor the interaction of monovalents cations (Li(+), Na(+), TMA(+)) with the surface of alumina-coated TiO(2) particles in concentrated media at different pH and electrolyte concentrations. This method allows measuring separately the negative and positive contribution to the surface charge. It showed that Cl(-) and TMA(+) are indifferent ions, but Li(+) and Na(+) specifically adsorb on the non-ionized alumina surface sites. The binding sequence of cations is Li(+)>Na(+)>TMA(+) at all ionic strengths investigated and is consistent with the structure-making and structure-breaking model developed a few decades ago. Polyacrylic acid (PAA) previously neutralized with the corresponding hydroxide (LiOH, NaOH, TMAOH) has been adsorbed on the alumina surface at different pH. The polymer counterion has a significant influence on the polymer adsorption. The sequence of the surface coverage as a function of the polymer counterion follows the order Li-PAA > Na-PAA > TMA-PAA. The much higher surface coverage with Li-PAA and Na-PAA compared to TMA-PAA is explained by the specific adsorption of Li-PAA and Na-PAA on the nonionized alumina surface sites, the same way LiCl and NaCl do.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号