首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The interaction of two–level atoms with a common heat bath leads to an effective interaction between the atoms, such that with time the internal degrees of the atoms become correlated or even entangled. If part of the atoms remain unobserved this creates additional indirect decoherence for the selected atoms, on top of the direct decoherence due to the interaction with the heat bath. I show that indirect decoherence can drastically increase and even dominate the decoherence for sufficiently large times. I investigate indirect decoherence through thermal black body radiation quantitatively for atoms trapped at regular positions in an optical lattice as well as for atoms at random positions in a cold gas, and show how indirect decoherence can be controlled or even suppressed through experimentally accessible parameters.  相似文献   

2.
Decoherence suppression from disturbance of the environment is an essential task in quantum information processing. We investigate decoherence suppression of a qubit system interacting with a heat bath with phase decoherence by employing the weak measurement (WM) and quantum measurement reversal (QMR) operation. We show explicitly that the qubit decoherence can be efficiently completely suppressed by means of the combination WM and QMR, which is independent of the form of the spectral density of the reservoir and the form of initial input state.  相似文献   

3.
4.
5.
In this paper, we study a Hamiltonian system constituted by two coupled two-level atoms (qubits) interacting with a nonlinear generalized cavity field. The nonclassical two-qubit correlation dynamics are investigated using Bures distance entanglement and local quantum Fisher information under the influences of intrinsic decoherence and qubit–qubit interaction. The effects of the superposition of two identical generalized coherent states and the initial coherent field intensity on the generated two-qubit correlations are investigated. Entanglement of sudden death and sudden birth of the Bures distance entanglement as well as the sudden changes in local Fisher information are observed. We show that the robustness, against decoherence, of the generated two-qubit correlations can be controlled by qubit–qubit coupling and the initial coherent cavity states.  相似文献   

6.
We study the dynamics and protection of tripartite quantum correlations in terms of genuinely tripartite concurrence, lower bound of concurrence and tripartite geometric quantum discord in a three-qubit system interacting with independent thermal bath. By comparing the dynamics of entanglement with that of quantum discord for initial GHZ state and W state, we find that W state is more robust than GHZ state, and quantum discord performs better than entanglement against the decoherence induced by the thermal bath. When the bath temperature is low, for the initial GHZ state, combining weak measurement and measurement reversal is necessary for a successful protection of quantum correlations. But for the initial W state, the protection depends solely upon the measurement reversal. In addition, the protection cannot usually be realized irrespective of the initial states as the bath temperature increases.  相似文献   

7.
Within the framework of the Lindblad theory for open quantum systems, we determine the degree of quantum decoherence of a harmonic oscillator interacting with a thermal bath. It is found that the system manifests a quantum decoherence which is more and more significant in time. We also calculate the decoherence time scale and analyze the transition from quantum to classical behavior of the considered system. The text was submitted by the author in English.  相似文献   

8.
We investigate a two-level atom interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence and find that a stationary quantum discord can arise in the interaction of the atom and cavity field as the time turns to infinity.We also find that the stationary quantum discord can be increased by applying a classical driving field.Furthermore,we explore the quantum discord dynamics of two identical non-interacting two-level atoms independently interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence.Results show that the quantum discord between two atoms is more robust than entanglement under phase decoherence and the classical driving field can help to improve the amount of quantum discord of the two atoms.  相似文献   

9.
In the framework of the Lindblad theory for open quantum systems, we determine the degree of quantum decoherence of a harmonic oscillator interacting with a thermal bath. It is found that the system manifests a quantum decoherence which is more and more significant in time. We also calculate the decoherence time and show that it has the same scale as the time after which thermal fluctuations become comparable with quantum fluctuations. The text was submitted by the author in English.  相似文献   

10.
钱懿  许晶波 《中国物理 B》2012,21(3):30305-030305
We investigate a two-level atom interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence and find that a stationary quantum discord can arise in the interaction of the atom and cavity field as the time turns to infinity. We also find that the stationary quantum discord can be increased by applying a classical driving field. Furthermore, we explore the quantum discord dynamics of two identical non-interacting two-level atoms independently interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence. Results show that the quantum discord between two atoms is more robust than entanglement under phase decoherence and the classical driving field can help to improve the amount of quantum discord of the two atoms.  相似文献   

11.
The paradigm of the two-level atom is revisited and its perturbative analysis is discussed in view of the principle of duality in perturbation theory. The models we consider are a two-level atom and an ensemble of two-level atoms both interacting with a single radiation mode. The aim is to see how the latter can be actually used as an amplifier of quantum fluctuations to the classical level through the thermodynamic limit of a very large ensemble of two-level atoms [M. Frasca, Phys. Lett. A 283 (2001) 271] and how can remove Schrödinger cat states. The thermodynamic limit can be very effective for producing both classical states and decoherence on a quantum system that evolves without dissipation. Decoherence without dissipation is indeed an effect of a single two-level atom interacting with an ensemble of two-level atoms, a situation that proves to be useful to understand recent experiments on nanoscale devices showing unexpected disappearance of quantum coherence at very low temperatures.  相似文献   

12.

We derive and solve analytically the non-Markovian master equation for harmonic quantum Brownian motion proving that, for weak system-reservoir couplings and high temperatures, it can be recast in the form of the master equation for a harmonic oscillator interacting with a squeezed thermal bath. This equivalence guarantees preservation of positivity of the density operator during the time evolution and allows one to establish a connection between the dynamics of Schrödinger cat states in squeezed environments and environment-induced decoherence in quantum Brownian motion.

  相似文献   

13.
In the framework of the Lindblad theory for open quantum systems we determine the degree of quantum decoherence and classical correlations of a harmonic oscillator interacting with a thermal bath. The transition from quantum to classical behaviour of the considered system is analysed and it is shown that the classicality takes place during a finite interval of time. We calculate also the decoherence time and show that it has the same scale as the time after which statistical fluctuations become comparable with quantum fluctuations.  相似文献   

14.
K. Le Hur 《Annals of Physics》2008,323(9):2208-2240
The concept of entanglement entropy appears in multiple contexts, from black hole physics to quantum information theory, where it measures the entanglement of quantum states. We investigate the entanglement entropy in a simple model, the spin-boson model, which describes a qubit (two-level system) interacting with a collection of harmonic oscillators that models the environment responsible for decoherence and dissipation. The entanglement entropy allows to make a precise unification between entanglement of the spin with its environment, decoherence, and quantum phase transitions. We derive exact analytical results which are confirmed by Numerical Renormalization Group arguments both for an ohmic and a subohmic bosonic bath. The entanglement entropy obeys universal scalings. We make comparisons with entanglement properties in the quantum Ising model and in the Dicke model. We also emphasize the possibility of measuring this entropy using charge qubits subject to electromagnetic noise; such measurements would provide an empirical proof of the existence of entanglement entropy.  相似文献   

15.
We propose and analyze an efficient high-dimensional quantum state transfer protocol in an XX coupling spin network with a hypercube structure or chain structure. Under free spin wave approximation, unitary evolution results in a perfect high-dimensional quantum swap operation requiring neither external manipulation nor weak coupling. Evolution time is independent of either distance between registers or dimensions of sent states, which can improve the computational efficiency. In the low temperature regime and thermodynamic limit, the decoherence caused by a noisy environment is studied with a model of an antiferromagnetic spin bath coupled to quantum channels via an Ising-type interaction. It is found that while the decoherence reduces the fidelity of state transfer, increasing intra-channel coupling can strongly suppress such an effect. These observations demonstrate the robustness of the proposed scheme.  相似文献   

16.
We studied the behaviour under decoherence of four different measures of the distance between quantum states and classical states for the harmonic oscillator coupled to a linear Markovian bath. Three of these are relative measures, using different definitions of the distance between the given quantum states and the set of all classical states. The fourth measure is an absolute one, the negative volume of the Wigner function of the state. All four measures are found to agree, in general, with each other. When applied to the eigenstates |n〉, all four measures behave non-trivially as a function of time during dynamical decoherence. First, we find that the first set of classical states to which the set of eigenstate evolves is (by all measures used) closest to the initial set. That is, all the states decohere to classicality along the ‘shortest path’. Finding this closest classical set of states helps improve the behaviour of all the relative distance measures. Second, at each point in time before becoming classical, all measures have a state n? with maximal quantum-classical distance; the value n? decreases as a function of time. Finally, we explore the dynamics of these non-classicality measures for more general states.  相似文献   

17.
In this Letter it is shown that exact decoherence to minimal uncertainty Gaussian pointer states is generic for free quantum particles coupled to a heat bath. More specifically, the Letter is concerned with damped free particles linearly coupled under product initial conditions to a heat bath at arbitrary temperature, with arbitrary coupling strength and spectral densities covering the Ohmic, sub-Ohmic, and supra-Ohmic regime. Then it is true that there exists a time t(c) such that for times t>t(c) the state can always be exactly represented as a mixture (convex combination) of particular minimal uncertainty Gaussian states, regardless of and independent from the initial state. This exact "localization" is hence not a feature specific to high temperature and weak damping limit, but is a generic property of damped free particles.  相似文献   

18.
A protocol based on quantum error correction based characterization of quantum dynamics (QECCD) is developed for quantum process tomography on a two-qubit system interacting dissipatively with a vacuum bath. The method uses a 5-qubit quantum error correcting code that corrects arbitrary errors on the first two qubits, and also saturates the quantum Hamming bound. The dissipative interaction with a vacuum bath allows for both correlated and independent noise on the two-qubit system. We study the dependence of the degree of the correlation of the noise on evolution time and inter-qubit separation.  相似文献   

19.
利用量子点与单模腔场共振相互作用模型提出了激子Bell类和W类纠缠态的制备方案.借助于超算符方法和态的保真度考察了所制备的激子纠缠态的消相干特性,结果表明:激子Bell类和W态的纠缠特性非常脆弱,在极短的时间里演变为消纠缠态.基于腔场与两量子点共振相互作用模型设计了一个量子交换门.  相似文献   

20.
We consider environment induced decoherence of quantum superpositions to mixtures in the limit in which that process is much faster than any competing one generated by the Hamiltonian H(sys) of the isolated system. While the golden rule then does not apply we can discard H(sys). By allowing for couplings to different reservoirs, we reveal decoherence as a universal short-time phenomenon independent of the character of the system as well as the bath and of the basis the superimposed states are taken from. We discuss consequences for the classical behavior of the macroworld and quantum measurement: For decoherence of superpositions of macroscopically distinct states H(sys) is always negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号