首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From an interplay between scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations, a comprehensive picture is obtained for oxygen adsorption on the Pt(110)-(1×2) surface, from single isolated oxygen atoms chemisorbed in FCC sites along the platinum ridges to the formation of a new high-coverage oxide-like structure with a local coverage of two oxygen atoms per platinum surface atom. We find that the repulsive O–O interactions for the O/Pt(110) system are compensated by an effective O–O attractive interaction originating from a strong coupling between oxygen adsorption and platinum lattice distortions.  相似文献   

2.
Novel atomic structures on a H-terminated Si(100)-(2x1)-H surface were found using scanning tunneling microscopy (STM). The structures are distinguishable only from Si dimers in empty-state STM images. They were observed on arsenic- and phosphorus-doped substrates, but not on boron-doped substrates. Surface density of these structures was found to be proportional to the dopant density in the substrate. First-principles calculations clarify that they are consisting of dopant pairs that are segregated from the bulk material. Hydrogen atoms attached to the dopant pair are found to flip between two positions on the surface due to a quantum effect.  相似文献   

3.
Si中掺Er的原子构型与电子特性   总被引:5,自引:0,他引:5       下载免费PDF全文
万钧  叶令  王迅 《物理学报》1998,47(4):652-657
采用定域密度泛函-离散变分方法(LDF-DVM)计算了Si中掺Er的原子构型与电子特性,并计算了O共掺杂对Si中掺Er体系的原子构型与电子特性的影响.结果表明,在没有O共掺杂时,Er处于四面体间隙位置时能量最低,此时Er的5d轨道在Si的导带中引入浅的共振态.处于替代位置的Er形成能略高,Er的5d轨道在Si的导带顶附近引入了受主态.当有O存在时,体系的形成能降低,能量最低的构型是Er处于六角形间隙位置,周围有6个O,此时Er的5d轨道在Si的导带下约为0.3eV处引入杂质态.从而解释了Si中掺Er体系在 关键词:  相似文献   

4.
The temperature-induced structural transition of the Si(1 1 3) surface is investigated by ab initio calculations. In this study, it is found that the room-temperature phase and the high-temperature phase have the 3 × 2 interstitial structure and the 3 × 1 interstitial structure, respectively. The existence of the 3 × 2 and 3 × 1 interstitial structures is supported by the analysis of scanning tunneling microscopy (STM) images and the calculation of surface core level shifts using final state pseudopotential theory. The theoretical STM images of interstitial structures are in good agreement with the STM images suggested by experiments. The analysis of STM images provides an insight into the characteristics of domain boundaries observed frequently in experiments. It is also found that the domain boundary can be formed by local 3 × 1 interstitial structures on the 3 × 2 interstitial surface. The theoretical analysis of the surface core level shifts reveals that the surface core levels in experiment originate from the interstitial structures. The lowest values in the surface core level shifts are found to be associated with the 2p core level shifts of the interstitial atoms.  相似文献   

5.
The electronic structure of GaAs(1 1 0) surface is analyzed using Density Functional Theory (DFT-GGA) in atomic orbital basis (LCAO). The surface orbitals and the corresponding local density of electronic states (LDOS) are calculated for purposes of interpreting STM images. We show how local atomic orbitals of surface atoms are related to tunneling channels for electrons in STM imaging. A destructive interference between orbitals of two neighbouring atoms increases the contrast between the two atoms, and this is reflected in directionality of STM patterns of GaAs(1 1 0) surfaces. We also discuss how the basic formalism of Tersoff-Hamann approach to STM simulation can be reformulated to reveal the role of phase difference between tunneling channels.  相似文献   

6.
Oxygen dopants are essential for tuning the electronic properties of the cuprate superconductors Bi_2Sr_2Ca_(n-1)Cu_nO_(2n+4+δ).Here,we study an optimally doped Bi_2Sr_(2-x)La_xCuO_(6+δ)and an overdoped Bi_(2-y)Pb_ySr_2CuO_(6+δ)by scanning tunneling microscopy and spectroscopy(STM/STS).Based on the characteristic features of local STS,three forms of oxygen dopants are identified:interstitial oxygen atoms on the SrO layers,oxygen vacancies on the SrO layers,and interstitial oxygen atoms on the BiO layers.In both samples,the first form dominates the number of oxygen dopants.From the extracted spatial distribution of the oxygen dopants,we calculate the dopant concentrations and estimate the average hole carrier density.The magnitudes of the electronic pseudogap state in both samples are inhomogeneously distributed in space.The statistical analysis on the spatial distributions of the oxygen dopants and the pseudogap magnitude demonstrates that the doped oxygen atoms on the SrO layers tend to suppress the nearby pseudogap magnitude.  相似文献   

7.
Accurate total-energy calculations are used to study the structures and formation energies of oxygen chains as models for thermal double donors (TDD's) in Si. We find that the first three TDD's (TDD0-TDD2) consist of one four-member ring, with one or two adjacent interstitial O atoms. These metastable TDD's form bistable negative-U systems with the corresponding stable, electrically inactive staggered structures. The TDD3-TDD7 structures are found to consist of four-member rings with adjacent interstitial O atoms at both ends. The TDD's with a central "di-Y-lid" core are found to become energetically competitive with the four-member ring TDD's only for clusters larger than ten O atoms.  相似文献   

8.
Mechanism for the enhanced diffusion of charged oxygen ions in SiO2   总被引:1,自引:0,他引:1  
Based on real-space multigrid electronic structure calculations, we find that a double Si-O-Si bridge structure is the lowest energy configuration of interstitial oxygen ions (O(-) and O(2-)) in SiO2, where two additional Si-O bonds are formed with almost no interaction between the interstitial and host O atoms, while the peroxy linkage is the most stable structure for neutral interstitial O. We propose a diffusion mechanism of interstitial O ions generated from molecular O2 under UV radiation, and find extremely low energy barriers of 0.11--0.27 eV for migration in the form of the double-bridge structure, in good agreement with enhanced oxidation experiments.  相似文献   

9.
The role of mobile interstitial oxygen atoms (O(0)) in defect processes in oxides is demonstrated by interconversion between the oxygen dangling bond and the peroxy radical (POR) in SiO2 glass. Superstoichiometric O(0) was created by F2 laser photolysis of the interstitial O2. On annealing above 300 degrees C, O(0) migrated and converted the oxygen dangling bond to POR. Exposure to 5.0 eV light converted POR back to a pair of the oxygen dangling bond and O(0) (quantum yield: approximately 0.1). These findings suggest that various defect processes typically occurring in SiO2 glass at approximately 300-500 degrees C are related to migration of O(0), which exists in the glass network in the peroxy linkage form.  相似文献   

10.
A comparison of recent experimental STM data with single-impurity and many-impurity Bogoliubov-de Gennes calculations strongly suggests that random out-of-plane dopant atoms in cuprates modulate the pair interaction locally. This type of disorder is crucial to understanding the nanoscale electronic inhomogeneity observed in BSCCO-2212, and can reproduce observed correlations between the positions of impurity atoms and various aspects of the local density of states such as the gap magnitude and the height of the coherence peaks. Our results imply that each dopant atom modulates the pair interaction on a length scale of order one lattice constant.  相似文献   

11.
This paper presents the mono-vacancy formation and migration energies of each element Ti, Ga, and C in the MAX phase Ti2GaC, which are obtained by first principles calculations. We also calculate the formation energies of oxygen substituting for Ti, Ga, and C and two formation energies of oxygen interstitial in different sites. The results show that the formation energy of oxygen substituting for Ti is the highest, and the formation energies of the O substitution for Ga atoms decrease as the oxygen concentration increases. The two different formation energies of one oxygen interstitial show that the stable site for the oxygen interstitial is at the center of the triangle composed by three Ga atoms. The effects of vacancy,oxygen substitution, and the interstitial on the electronic properties of Ti2GaC are also discussed in light of the density of states and the electron charge density.  相似文献   

12.
The titanium dioxide rutile (0 1 1) (equivalent to (1 0 1)) surface reconstructs to a stable (2 × 1) structure upon sputtering and annealing in ultrahigh vacuum. A previously proposed model (T.J. Beck, A. Klust, M. Batzill, U. Diebold, C. Di Valentin, A. Selloni, Phys. Rev. Lett. 93 (2004) 036104/1) containing onefold coordinated oxygen atoms (titanyl groups, TiO) is supported by Scanning Tunneling Microscopy (STM) measurements. These TiO sites are imaged bright in empty-states STM. A few percent of these terminal oxygen atoms are missing at vacuum-annealed surfaces of bulk-reduced samples. These O vacancies are imaged as dark spots. Their number density depends on the reduction state of the bulk. Double vacancies are the most commonly observed defect configuration; single vacancies and vacancies involving several O atoms are present as well. Formation of oxygen vacancies can be suppressed by annealing a sputtered surface first in vacuum and then in oxygen; annealing a sputtered surface in oxygen results in surface restructuring and a (3 × 1) phase. Anti-phase domain boundaries in the (2 × 1) structure are active adsorption sites. Segregation of calcium impurities from the bulk results in an ordered overlayer that exhibits domains with a centered (2 × 1) periodicity in STM.  相似文献   

13.
莫曼  曾纪术  何浩  张喨  杜龙  方志杰 《物理学报》2019,68(10):106102-106102
研制开发新型的光电材料对促进社会经济发展具有重要的科学意义和实用价值.利用宽禁带CuInO_2铟基材料实现全透明光电材料是目前深入研究的热点.通过基于密度泛函的第一性原理计算方法,本文计算出掺杂元素Mg, Be, Mn在CuInO_2的形成能.计算结果表明,施主类缺陷(如掺杂元素替代Cu原子或进入间隙位置)由于较高的形成能和较深的跃迁能级,很难在CuInO_2材料中出现N型导电;而受主缺陷中,在氧原子化学势极大的情况下, Mg原子替代In能成为CuInO_2理想的受主缺陷.计算结果可为制备性能优异的CuInO_2材料提供指导.  相似文献   

14.
《Surface science》1994,319(3):L34-L40
Scanning tunneling microscopy (STM) is used to study the oxidation of CO on O pre-covered Cu(110) in the steady state at 400 K at the atomic level. There is a strong preference for CO to react with oxygen along the p(2 × 1) oxygen rows. The reaction appears to occur initially at the outer edge of an oxygen island, creating defects in the overlayer structure. Once created, oxygen overlayer defects are more reactive than non-defect sites and play a dominant role in sustaining the reaction. Copper atoms that make-up the p(2 × 1) oxygen overlayer structure add to terrace edges after oxygen supply is exhausted and do not form small Cu islands that could eventually lead to surface roughening.  相似文献   

15.
D. Alf    S. de Gironcoli  S. Baroni 《Surface science》1998,410(2-3):151-157
We report on a first-principles study of the structure of O/Rh(001) at half a monolayer of oxygen coverage, performed using density functional theory. We find that oxygen atoms sit at the center of the black squares in a chess-board c(2×2) pattern. This structure is unstable against a rhomboid distortion of the black squares, which shortens the distance between an O atom and two of the four neighboring Rh atoms, while lengthening the distance with respect to the other two. We actually find that the surface energy is further lowered by allowing the O atom to get off the short diagonal of the rhombus thus formed. We predict that the latter distortion is associated with an order–disorder transition, occurring below room temperature. The above rhomboid distortion of the square lattice may be seen as a rotation of the empty white squares. Our findings are at variance with recent claims based on STM images, according to which it is instead the black squares which would rotate. We argue that these images are indeed compatible with our predicted reconstruction pattern.  相似文献   

16.
We demonstrate the controlled incorporation of P dopant atoms in Si(001), presenting a new path toward the creation of atomic-scale electronic devices. We present a detailed study of the interaction of PH3 with Si(001) and show that it is possible to thermally incorporate P atoms into Si(001) below the H-desorption temperature. Control over the precise spatial location at which P atoms are incorporated was achieved using STM H lithography. We demonstrate the positioning of single P atoms in Si with approximately 1 nm accuracy and the creation of nanometer wide lines of incorporated P atoms.  相似文献   

17.
采用第一性原理赝势平面波方法研究掺杂元素Fe对LiAlH4放氢性能的影响及其作用机理.计算杂质形成能、电子态密度、氢原子分解能,分析原子间的成键情况和结构的稳定性.结果表明:Fe在LiAlH4中占据间隙位置或者替代Al或者Li时,都能改善LiAlH4的放氢性能.Fe在LiAlH4中倾向于占据间隙位置,电子结构分析显示Fe占据间隙位置时与近邻的Al原子产生强烈的相互作用;另一方面,Fe与近邻的H也有较强相互作用.两个因素共同的结果是破坏了[AlH4]基团的稳定性,从而改善LiAlH4的放氢性能.结果与实验相吻合.  相似文献   

18.
"Subsurfactant epitaxy" is established as a conceptually new approach for introducing manganese as a magnetic dopant into germanium. A kinetic pathway is devised in which the subsurface interstitial sites on Ge(100) are first selectively populated with Mn, while lateral diffusion and clustering on or underneath the surface are effectively suppressed. Subsequent Ge deposition as a capping layer produces a novel surfactantlike phenomenon as the interstitial Mn atoms float towards newly defined subsurface sites at the growth front. Furthermore, the Mn atoms that failed to float upwards are uniformly distributed within the Ge capping layer. The resulting doping levels of order 0.25 at. % would normally be considered too low for ferromagnetic ordering, but the Curie temperature exceeds room temperature by a comfortable margin. Subsurfactant epitaxy thus enables superior dopant control in magnetic semiconductors.  相似文献   

19.
20.
《Surface Science Reports》2014,69(4):366-388
Both density functional theory calculations and numerous experimental studies demonstrate a variety of unique features in metal supported oxide films and transition metal doped simple oxides, which are markedly different from their unmodified counterparts. This review highlights, from the computational perspective, recent literature on the properties of the above mentioned surfaces and how they adsorb and activate different species, support metal aggregates, and even catalyse reactions. The adsorption of Au atoms and clusters on metal-supported MgO films are reviewed together with the cluster׳s theoretically predicted ability to activate and dissociate O2 at the Au–MgO(100)/Ag(100) interface, as well as the impact of an interface vacancy to the binding of an Au atom. In contrast to a bulk MgO surface, an Au atom binds strongly on a metal-supported ultra-thin MgO film and becomes negatively charged. Similarly, Au clusters bind strongly on a supported MgO(100) film and are negatively charged favouring 2D planar structures. The adsorption of other metal atoms is briefly considered and compared to that of Au. Existing computational literature of adsorption and reactivity of simple molecules including O2, CO, NO2, and H2O on mainly metal-supported MgO(100) films is discussed. Chemical reactions such as CO oxidation and O2 dissociation are discussed on the bare thin MgO film and on selected Au clusters supported on MgO(100)/metal surfaces. The Au atoms at the perimeter of the cluster are responsible for catalytic activity and calculations predict that they facilitate dissociative adsorption of oxygen even at ambient conditions. The interaction of H2O with a flat and stepped Ag-supported MgO film is summarized and compared to bulk MgO. The computational results highlight spontaneous dissociation on MgO steps. Furthermore, the impact of water coverage on adsorption and dissociation is addressed. The modifications, such as oxygen vacancies and dopants, at the oxide–metal interface and their effect on the adsorption characteristics of water and Au are summarized. Finally, more limited computational literature on transition metal (TM) doped CaO(100) and MgO(100) surfaces is presented. Again, Au is used as a probe species. Similar to metal-supported MgO films, Au binds more strongly than on undoped CaO(100) and becomes negatively charged. The discussion focuses on rationalization of Au adsorption with the help of Born–Haber cycle, which reveals that the so-called redox energy including the electron transfer from the dopant to the Au atom together with the simultaneous structural relaxation of lattice atoms is responsible for enhanced binding. In addition, adsorption energy dependence on the position and type of the dopant is summarized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号