首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analyze how thermal fluctuations near a finite temperature nematic phase transition affect the spectral function A(k,ω) for single-electron excitations in a two-dimensional metal. Perturbation theory yields a splitting of the quasiparticle peak with a d-wave form factor, reminiscent of a pseudogap. We present a resummation of contributions to all orders in the Gaussian fluctuation regime. Instead of a splitting, the resulting spectral function exhibits a pronounced broadening of the quasiparticle peak, which varies strongly around the Fermi surface and vanishes upon approaching the Brillouin-zone diagonal. The Fermi surface obtained from a Brillouin-zone plot of A(k,0) seems truncated to Fermi arcs.  相似文献   

2.
Lightly doped La2-xSrxCuO4 in the so-called "insulating" spin-glass phase has been studied by angle-resolved photoemission spectroscopy. We have observed that a "quasiparticle" (QP) peak crosses the Fermi level in the node direction of the d-wave superconducting gap, forming an "arc" of Fermi surface, which explains the metallic behavior at high temperatures of the lightly doped materials. The QP spectral weight of the arc smoothly increases with hole doping, which we attribute to the n approximately x behavior of the carrier number in the underdoped and lightly doped regions.  相似文献   

3.
We investigate the doping dependence of the penetration depth versus temperature in electron-doped Pr(2-x)Ce(x)CuO(4-delta) using a model which assumes the uniform coexistence of (mean-field) antiferromagnetism and superconductivity. Despite the presence of a d(x2-y2) pairing gap in the underlying spectrum, we find nodeless behavior of the low-T penetration depth in the underdoped case, in accord with experimental results. As doping increases, a linear-in-T behavior of the penetration depth, characteristic of d-wave pairing, emerges as the lower magnetic band crosses the Fermi level and creates a nodal Fermi surface pocket.  相似文献   

4.
The question of determining the underlying Fermi surface (FS) that is gapped by superconductivity (SC) is of central importance in strongly correlated systems, particularly in view of angle-resolved photoemission experiments. Here we explore various definitions of the FS in the superconducting state using the zero-energy Green's function, the excitation spectrum, and the momentum distribution. We examine (a) d-wave SC in high-Tc cuprates, and (b) the s-wave superfluid in the BCS-Bose-Einstein condensation (BEC) crossover. In each case we show that the various definitions agree, to a large extent, but all of them violate the Luttinger count and do not enclose the total electron density. We discuss the important role of chemical potential renormalization and incoherent spectral weight in this violation.  相似文献   

5.
We calculate the momentum distribution n(k) of the unitary Fermi gas by using quantum Monte Carlo calculations at finite temperature T/?(F) as well as in the ground state. At large momenta k/k(F), we find that n(k) falls off as C/k?, in agreement with the Tan relations. From the asymptotics of n(k), we determine the contact C as a function of T/?(F) and present a comparison with theory. At low T/?(F), we find that C increases with temperature, and we tentatively identify a maximum around T/?(F) ? 0.4. Our calculations are performed on lattices of spatial extent up to N(x) = 14 with a particle number per unit volume of ? 0.03-0.07.  相似文献   

6.
The contact I, introduced by Tan, has emerged as a key parameter characterizing universal properties of strongly interacting Fermi gases. For ultracold Fermi gases near a Feshbach resonance, the contact depends upon two quantities: the interaction parameter 1/(k(F)a), where k(F) is the Fermi wave vector and a is the s-wave scattering length, and the temperature T/T(F), where T(F) is the Fermi temperature. We present the first measurements of the temperature dependence of the contact in a unitary Fermi gas using Bragg spectroscopy. The contact is seen to follow the predicted decay with temperature and shows how pair-correlations at high momentum persist well above the superfluid transition temperature.  相似文献   

7.
Measurements of the resistivity, magnetoresistance, and penetration depth were made on films of La1.85Sr0.15CuO4, with up to 12 at. % of Zn substituted for the Cu. The results show that the quadratic temperature dependence of the inverse square of the penetration depth, indicative of d-wave superconductivity, is not affected by doping. The suppression of superconductivity leads to a metallic nonsuperconducting phase, as expected for a pairing mechanism related to spin fluctuations. The metal-insulator transition occurs in the vicinity of k(F)l approximately 1, and appears to be disorder driven, with the carrier concentration unaffected by doping.  相似文献   

8.
We study the evolution of the single-particle spectrum with electron doping in a scheme which adds multiple exchange of transverse spin excitations to the mean-field antiferromagnetic insulator. Away from half-filling small Fermi surface pockets appear first around the X points, and simultaneously new spectral weight grows in the insulating gap. With further doping the in-gap states develop the character of a renormalized quasiparticle band near the chemical potential. The essential features in momentum-energy space agree well with recent studies using angle-resolved photoemission spectroscopy on electron-doped cuprates. We interpret the origins and the nature of the in-gap states using a simple variational wave function.  相似文献   

9.
We investigate the superconducting phase in the K(x)Ba(1-x)Fe2As2 122 compounds from moderate to strong hole-doping regimes. Using the functional renormalization group, we show that, while the system develops a nodeless anisotropic s(±) order parameter in the moderately doped regime, gapping out the electron pockets at strong hole doping drives the system into a nodal (cos k(x) + cos k(y))(cos k(x) - cos k(y)) d-wave superconducting state. This is in accordance with recent experimental evidence from measurements on KFe2As2 which observe a nodal order parameter in the extreme doping regime. The magnetic instability is strongly suppressed.  相似文献   

10.
We report inelastic neutron scattering measurements of the resonant spin excitations in Ba(1-x)K(x)Fe(2)As(2) over a broad range of electron band filling. The fall in the superconducting transition temperature with hole doping coincides with the magnetic excitations splitting into two incommensurate peaks because of the growing mismatch in the hole and electron Fermi surface volumes, as confirmed by a tight-binding model with s(±)-symmetry pairing. The reduction in Fermi surface nesting is accompanied by a collapse of the resonance binding energy and its spectral weight, caused by the weakening of electron-electron correlations.  相似文献   

11.
We report the results of doping- and pressure-dependent experimental investigations on the low-dimensional Mott-Hubbard insulators TiOCl and TiOBr. As observed by photoelectron spectroscopy, doping with Na and K shifts the valence band to higher binding energies associated with a jump of the chemical potential. With increasing doping, a broad hump develops close to the Fermi energy and the energy gap “softens”. The application of pressure induces the appearance of spectral weight close to the Fermi energy, as probed by infrared transmittance and reflectance measurements. The pressure-induced changes in the electronic properties coincide with a structural phase transition according to powder X-ray diffraction studies under pressure. The experimental findings are compared to theoretical predictions.  相似文献   

12.
We discuss a multichannel SU(N) Kondo model which displays nontrivial zero-temperature phase transitions due to a conduction electron density of states vanishing with a power law at the Fermi level. In a particular large- N limit, the system is described by coupled integral equations corresponding to a dynamic saddle point. We exactly determine the universal low-energy behavior of spectral densities at the scale-invariant fixed points, obtain anomalous exponents, and compute scaling functions describing the crossover near the quantum-critical points. We argue that our findings are relevant to recent experiments on impurity-doped d-wave superconductors.  相似文献   

13.
We compare the angle-resolved photoemission spectra of the hole-doped Cu-O chains in PrBa2Cu3O7 (Pr123) and in PrBa2Cu4O8 (Pr124). While, in Pr123, a dispersive feature from the chain takes a band maximum at k(b) (momentum along the chain) approximately pi/4 and loses its spectral weight around the Fermi level, it reaches the Fermi level at k(b) approximately pi/4 in Pr124. Although the chains in Pr123 and Pr124 are approximately 1/4 filled, they show contrasting behaviors: While the chains in Pr123 have an instability to charge ordering, those in Pr124 avoid it and show an interesting spectral feature of a metallic coupled-chain system.  相似文献   

14.
We propose that a new state with a fully gapless Fermi surface appears in quasi-2D multiband superconductors in magnetic field applied parallel to the plane. It is characterized by a paramagnetic moment caused by a finite density of states on the open Fermi surface. We calculate thermodynamic and magnetic properties of the gapless state for both s-wave and d-wave cases, and discuss the details of the first order metamagnetic phase transition that accompanies the appearance of the new phase in s-wave superconductors. We suggest possible experiments to detect this state both in the s-wave (2-H NbSe2) and d-wave (CeCoIn5) superconductors.  相似文献   

15.
We use a variational approach with strictly strong-correlated constraint to gain insight into low-energy states of t-t-t-J model in the electron-doped regime. Compared with the recent results on the electron-doped cuprates obtained by angle-resolved photoemission spectroscopy (ARPES), we show that based on the long-range ordered antiferromagnetic metallic state prohibiting vacant sites, our results lead to qualitatively similar trends in ARPES spectra and Fermi surface topology. Additionally, the results about the evolution of the energy gap and spectral weight as a function of doping will be discussed.  相似文献   

16.
We study staggered flux fluctuations around the superconducting state of the SU(2) mean-field theory for the two-dimensional t-J model and their effect on the electron spectral function. The quasiparticle peaks near (pi,0),(0,pi) get strongly broadened and partially wiped out by these fluctuations while the quasiparticle peaks near the nodes of the d-wave gap are preserved over a wide parameter range. The strength of these effects is governed by an energy scale that decreases towards zero for doping x-->0 and that is related to the energy splitting between the SU(2)-related superconducting and staggered flux mean-field states.  相似文献   

17.
We propose the projected BCS wave function as the ground state for the doped Mott insulator SrCu2(BO3)2 on the Shastry-Sutherland lattice. At half filling this wave function yields the exact ground state. Adding mobile charge carriers, we find a strong asymmetry between electron and hole doping. Upon electron doping an unusual metal with strong valence bond correlations forms. Hole doped systems are d-wave resonating valence bond superconductors in which superconductivity is strongly enhanced by the emergence of spatially varying plaquette bond order.  相似文献   

18.
The Fermi surface topologies of underdoped samples of the high-T(c) superconductor Bi2Sr2CaCu2O(8+δ) have been measured with angle resolved photoemission. By examining thermally excited states above the Fermi level, we show that the observed Fermi surfaces in the pseudogap phase are actually components of fully enclosed hole pockets. The spectral weight of these pockets is vanishingly small at the magnetic zone boundary, creating the illusion of Fermi "arcs." The area of the pockets as measured in this study is consistent with the doping level, and hence carrier density, of the samples measured. Furthermore, the shape and area of the pockets is well reproduced by phenomenological models of the pseudogap phase as a spin liquid.  相似文献   

19.
I introduce a doped two-dimensional quantum dimer model describing a doped Mott insulator and retaining the original Fermi statistics of the electrons. This model shows a rich phase diagram including a d-wave hole-pair unconventional superconductor at small enough doping and a bosonic superfluid at large doping. The hole kinetic energy is shown to favor binding of topological defects to the bare fermionic holons turning them into bosons, in agreement with arguments based on resonating valence bond wave function. Results are discussed in the context of cuprate superconductors.  相似文献   

20.
We report a tunneling study between Pr(2-x)Ce(x)CuO(4-delta) and lead as a function of doping, temperature, and magnetic field. The temperature dependence of the gap follows the BCS prediction. Our data fit a nonmonotonic d-wave order parameter for the whole doping range studied. From our data we are able to conclude that the electron-doped cuprate Pr(2-x)Ce(x)CuO(4-delta) is a weak-coupling BCS dirty superconductor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号