首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a space-borne gravitational-wave detection scheme, called atom interferometric gravitationalwave space observatory(AIGSO). It is motivated by the progress in the atomic matter-wave interferometry, which solely utilizes the standing light waves to split, deflect and recombine the atomic beam. Our scheme consists of three drag-free satellites orbiting the Earth. The phase shift of AIGSO is dominated by the Sagnac effect of gravitational-waves, which is proportional to the area enclosed by the a√tom interferometer, the frequency and amplitude of gravitational-waves.The scheme has a strain sensitivity 10~(-20)/Hz~(1/2) in the 100 mHz–10 Hz frequency range, which fills in the detection gap between space-based and ground-based laser interferometric detectors. Thus, our proposed AIGSO can be a good complementary detection scheme to the space-borne laser interferometric schemes, such as LISA. Considering the current status of relevant technology readiness, we expect our AIGSO to be a promising candidate for the future space-based gravitational-wave detection plan.  相似文献   

2.
Raw space-based gravitational-wave data like laser interferometer space antenna's (LISA) phase measurements are dominated by laser frequency noise. The standard technique to make this data usable for gravitational-wave detection is time-delay interferometry (TDI), which cancels laser noise terms by forming suitable combinations of delayed measurements. To do so, TDI relies on inter-spacecraft distances and on how laser noise enters the interferometric data. The basic concepts of an alternative approach which does not rely on independent knowledge of temporal correlations in the dominant noise recently introduced. Instead, this automated principal component interferometry (aPCI) approach only assumes that one can produce some linear combinations of the temporally nearby regularly spaced phase measurements, which cancel the laser noise. Then the data is let to reveal those combinations, thus providing a set of laser-noise-free data channels. The authors' previous approach relies on the simplifying additional assumption that the filters which lead to the laser-noise-free data streams are time-independent. In LISA, however, these filters will vary as the constellation armlengths evolve. Here, a generalization of the basic aPCI concept compatible with data dominated by a still unmodeled but slowly varying dominant noise covariance is discussed. Despite its independence on any model, aPCI successfully mitigates laser frequency noise below the other noises' level, and its sensitivity to gravitational waves is the same as the state-of-the-art second-generation TDI, up to a 2% error.  相似文献   

3.
We have demonstrated displacement- and frequency-noise-free laser interferometry (DFI) by partially implementing a recently proposed optical configuration using bidirectional Mach-Zehnder interferometers (MZIs). This partial implementation, the minimum necessary to be called DFI, has confirmed the essential feature of DFI: the combination of two MZI signals can be carried out in a way that cancels displacement noise of the mirrors while maintaining gravitational-wave signals. The attained maximum displacement-noise suppression was 45 dB.  相似文献   

4.
冯衍 《物理》2016,45(5):293-299
爱因斯坦预言引力波100周年之际,人类首次直接探测到引力波信号。文章简单介绍了这次的主角——高新激光干涉引力波天文台(advanced LIGO)的光学与激光部分技术。激光干涉引力波探测器,本质上是一个迈克尔孙干涉仪。原初的迈克尔孙干涉仪也曾在否定以太理论、促使相对论创立的过程中起关键作用。而基于爱因斯坦受激发射理论发展起来的激光技术也在引力波探测中立下汗马功劳。出于协同测量与定位以及扩展引力波探测频段等方面的考虑,除LIGO之外,还有多个地面和空间激光干涉引力波探测器在建或在研。可以预计,当前只是引力波探测技术与引力波天文学发展的开端。  相似文献   

5.
We experimentally demonstrate a cancellation of back-action noise in optical measurements. Back-action cancellation was first proposed within the framework of gravitational-wave detection by dual resonators as a way to drastically improve their sensitivity. We have developed an experiment based on a high-finesse Fabry-Perot cavity to study radiation-pressure effects in ultrasensitive displacement measurements. Using an intensity-modulated intracavity field to mimic the quantum radiation-pressure noise, we report the first observation of back-action cancellation due to a coherent mechanical response of the mirrors in the cavity to the radiation-pressure noise. We have observed a sensitivity improvement by a factor larger than 20 both in displacement and weak-force measurements.  相似文献   

6.
We consider a system for stabilization of the phase, correlation self-compensation of noise, and optimal processing of the response signal in a Dulkyn laser pentagonal gravitational-wave detector, providing noise detection and optimal processing of the PSR J1537 + 1155 response signal in the laser pentagonal detector. Kazan State University. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 22–28, February, 1998.  相似文献   

7.
Absorption of laser beam power in optical elements induces thermal gradients that may cause unwanted phase aberrations. In precision measurement applications, such as laser interferometric gravitational-wave detection, corrective measures that require mechanical contact with or attachments to the optics are precluded by noise considerations. We describe a radiative thermal corrector that can counteract thermal lensing and (or) thermoelastic deformation induced by coating and substrate absorption of collimated Gaussian beams. This radiative system can correct anticipated distortions to a high accuracy, at the cost of an increase in the average temperature of the optic. A quantitative analysis and parameter optimization is supported by results from a simplified proof-of-principle experiment, demonstrating the method's feasibility for our intended application.  相似文献   

8.
《Physics letters. A》2005,334(1):67-72
Recent researches show that the fluctuations of the dielectric mirrors coating thickness can introduce a substantial part of the future laser gravitational-wave antennae total noise budget. These fluctuations are especially large in the high-reflectivity end mirrors of the Fabry–Perot cavities which are being used in the laser gravitational-wave antennae.We show here that the influence of these fluctuations can be substantially decreased by using additional short Fabry–Perot cavities, tuned in antiresonance instead of the end mirrors.  相似文献   

9.
In this paper the problem of a physically realizable whitening-filter (WF) synthesis for cryogenic resonant gravitational-wave antennas is considered in the framework of the optimal linear Kalman-Bucy filtering. A system of equations determining the structure of the Kalman filter for gravitational-wave antennas with a displacement converter is presented. The transfer function of a stationary physically realizable WF is derived. The Kalman approach ensures the possibility of high frequency parameter measurements of Gaussian and non-Gausssian noises in low-dissipation oscillatory systems for observation intervals, which are relatively short in comparison to the relaxation time.  相似文献   

10.
Summary Devices exploiting nuclear resonances are believed to be very promising in detecting weak gravitational-wave perturbations. The main difficulty with these systems is that the high-energy photons which induce the nuclear transitions need to travel over distances comparable with the gravity wave wave-lengths (∼100 km) in order to lead to the absorption the largest frequency shift, due to gravitational radiation. Here we show that, if these high-energy photons are not produced by nuclear de-excitation, but by inverse Compton scattering of laser light with ultrarelativistic electrons, a deviation from the resonant frequencies of the order of the gravity wave amplitude is still attained without the photon travel time being comparable with the gravitational-wave periods.
Riassunto L'uso di apparati che sfruttano i processi di risonanza nucleare sembra essere promettente nella rivelazione delle onde gravitazionali. La difficoltà maggiore in questi apparati è che i fotoni di alta energia che inducono le risonanze devono viaggiare per distanze confrontabili con la lunghezza d'onda delle onde gravitazionali (∼100 km) per poter risentire della variazione di frequenza massima dovuta all'interazione con le onde gravitazionali. Qui si mostra che se questi fotoni di alta energia sono prodotti non dalla diseccitazione nucleare ma da urti Compton inverso di laser con particelle relativistiche, una deviazione dalla frequenza di risonanza dell'ordine dell'ampiezza delle onde gravitazionali è ottenuta senza che il tempo di volo dei fotoni sia confrontabile con il periodo delle onde gravitazionali stesse.
  相似文献   

11.
We show that the generation of entanglement of two heavily macroscopic mirrors is feasible with state of the art techniques of high-precision laser interferometry. The basis of such a demonstration would be a Michelson interferometer with suspended mirrors and simultaneous homodyne detections at both interferometer output ports. We present the connection between the generation of entanglement and the standard quantum limit (SQL) for a free mass. The SQL is a well-known reference limit in operating interferometers for gravitational-wave detection and provides a measure of when macroscopic entanglement can be observed in the presence of realistic decoherence processes.  相似文献   

12.
Gravitational-wave detectors have been well developed and operated with a high sensitivity. However, they still suffer from mirror displacement noise. In this Letter, we propose a resonant speed meter as a displacement noise-canceled configuration based on a ring-shaped synchronous recycling interferometer. The remarkable feature of this interferometer is that, at certain frequencies, gravitational-wave signals are amplified, while displacement noises are not.  相似文献   

13.
It is shown that stabilization of the different frequency of optical radiations generated in the reference and signal resonators of the Dulkyn laser-interferometric gravitational-wave detector results in an efficient reevaluation of basic parameters describing the line widths of the laser radiation and the passive resonator, as well as the minimal laser power required to separate the valid signal from noises caused by natural fluctuations.  相似文献   

14.
We propose a class of displacement- and laser-noise-free gravitational-wave-interferometer configurations, which does not sense nongeodesic mirror motion and laser noise, but provides a nonvanishing gravitational-wave signal. Our interferometers consist of four mirrors and two beam splitters, which form four Mach-Zehnder interferometers. By contrast to previous works, no composite mirrors with multiple reflective surfaces are required. Each mirror in our configuration is sensed redundantly, by at least two pairs of incident and reflected beams. Displacement- and laser-noise-free detection is achieved when output signals from these four interferometers are combined appropriately. Our 3-dimensional interferometer configuration has a low-frequency response proportional to f2, which is better than the f3 achievable by previous 2-dimensional configurations.  相似文献   

15.
The laser interferometric gravitational-wave detectors are sensitive to the quantum state of light employed in the dark port of interferometric system. In this paper a general quantum state for the dark input port is assumed. The quantum state of light is expanded versus the Fock states. The quantum noise of interferometric system is computed as a function of the quantum state of light. The variational method and the genetic algorithm are employed to determine the coefficients of the dark input port and the laser input power for the minimization of the quantum noise. Calculation shows that the optimum quantum state for the dark input port is very close to the vacuum squeezed state. For this optimum quantum state the quantum noise and optimum laser power reduces one order of magnitude relative to the conventional interferometer.  相似文献   

16.
激光光源具有单色性好、亮度高、方向性强和相干性强等优势,所以基于干涉原理对激光光谱进行积分可以应用于微位移测量领域。在重力方法探测过程中,因地质结构不同引起万有引力差异而造成的探测质量块位移十分微小,通常为纳米级,所以研制高精度纳米级微位移测量系统尤为重要。然而传统电容位移测量法在防止电磁干扰等方面存在不足。相比较而言,光学干涉法具备抗电磁干扰、环境适应性强等优点,且精度不亚于电容法。传统干涉系统光路复杂、难于集成,对重力仪的小型化与集成化不利。所以研制一种结构紧凑的光学干涉系统用于实现纳米级微位移测量成为亟需。基于可变相位延迟的激光干涉式方法,能够实现亚纳米级微位移测量,较传统干涉系统具备结构紧凑、易于集成的优势。本微位移测量系统由半导体激光器、起偏器、检偏器、楔形双折射晶体组和光谱仪组成。研究从以下方面展开:首先是确定测量系统方案,提出了偏振光干涉双路结构,以楔形双折射晶体组作为核心器件,将晶体间相对位移转化为o光和e光的差别化相位延迟,并对激光光谱进行积分,进而将位移变化转变为合成光强的变化;其次是建立测量位移物理模型,根据设计的双折射晶体组几何结构、位移过程与光路,确定光强变化与待测位移量之间的关系;第三是系统参数优化,为了使系统的测量误差和量程满足实际需求,利用已建立的物理模型,将测量误差和量程分别与晶体切割角度α、激光器激射波长λ建立函数关系。根据应用需求,确定适当的误差和量程取值范围,进而得到角度α和波长λ取值范围;最后加工晶体、搭建系统并进行测试。具体即以αλ为调控参量,联合考虑“近似线性化”和“激光器光强波动误差”对系统量程进行优化仿真。同样,联合考虑“激光器光强波动误差”和“激光器波长波动误差”,并利用“系统最大位移量”(与量程有关)对系统测量误差进行优化仿真。最终确定钒酸钇晶体切割角度α为20°,激光器激射波长λ为635 nm。实验中,以10 nm为间隔利用压电陶瓷设置位移量进行位移测试,包括:系统的线性标定、系统量程和测量误差测试。另外,在保持待测位置不变的条件下,利用本位移测量系统进行了2 h不间断测量,并通过阿伦方差确定了系统的位移探测下限。实验结果表明,位移量程范围大于150 nm,位移测量误差约0.5 nm,位移探测下限为0.32 nm@23 s,探测线性度判定系数(R2)为0.999 85。综上所述,以自制楔形双折射晶体组作为核心器件的可变相位延迟激光干涉式微位移测量系统,可作为重力探测中的质量块位移测量单元。与电容法相比具有更强的环境适应性;与传统干涉系统相比具有结构简易、光路紧凑等优点,便于重力仪的小型化与集成化。  相似文献   

17.
Sun KX  Byer RL 《Optics letters》1998,23(8):567-569
All-reflective Michelson, Sagnac, and Fabry-Perot interferometers based on grating beam splitters are experimentally demonstrated at a wavelength of 1064 nm. A 1200-groove/mm grating diffracting 0 and -1 orders with an efficiency of 48.2% for each order was used as a near-50/50 beam splitter. The all-reflective Sagnac and Michelson interferometers were formed by reintroducing both of the diffracted beams back to the grating. The Fabry-Perot interferometer was formed in a Littrow configuration by using a 1700-groove/mm grating with a blazing efficiency of 91% as a cavity coupler. These interferometers encompass all the fundamental configurations of all-reflective laser interferometric gravitational-wave detectors, promising improved wave-front quality by avoiding volume thermal effects in transmissive optics under high-power laser illumination.  相似文献   

18.
系统信噪比一直是制约激光探测武器性能的关键性因素之一。为提高系统探测信噪比,利用阿达玛变换方法,在计算模板大小(17.48×17.48mm)和码元数N=255的基础上,详细介绍了Sn循环矩阵的生成,最后选择液晶空间光调制器充当编码模板。通过在液晶面板上不同位置施加不同的电压,利用旋光效应对通过的激光衍射条纹进行控制,按其通过与否(1/0)进行编码。在这一方法指导下进行了系统的仿真实验研究并获得成功。实验结果表明:将阿达玛变换应用于激光光谱测量,在不增加测量次数的情况下,可以有效地提高系统的信噪比。  相似文献   

19.
20.
Existing estimates of the gravitational-wave damping timescale of the dominant quadrupole oscillation mode in the case of rapidly rotating stars are based on using a Newtonian estimate for the energy of the mode, in combination with the lowest-order post-Newtonian quadrupole formula for estimating the gravitational-wave luminosity. We investigate a number of other choices for estimating the gravitational-wave damping timescale in the nonrotating limit and construct a highly accurate, empirically corrected formula that has a maximum relative error of only 3% with respect to the perturbative result in full general relativity. The expressions involved are sufficiently general to be extended to the case of rapidly rotating stars. We also present a new higher-order empirical relation for the gravitational-wave damping timescale of quadrupole oscillations that is accurate in the whole range of expected values for the compactness of neutron stars, without the need for involving the moment of inertia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号