首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrate time reversal of nuclear spin dynamics in highly magnetized dilute liquid (3)He-(4)He mixtures through effective inversion of long-range dipolar interactions. These experiments, which involve using magic sandwich NMR pulse sequences to generate spin echoes, probe the spatiotemporal development of turbulent spin dynamics and promise to serve as a versatile tool for the study and control of dynamic magnetization instabilities. We also show that a repeated magic sandwich pulse sequence can be used to dynamically stabilize modes of nuclear precession that are otherwise intrinsically unstable. To date, we have extended the effective precession lifetimes of our magnetized samples by more than three orders of magnitude.  相似文献   

2.
Purcell's scallop theorem states that swimmers deforming their shapes in a time-reversible manner ("reciprocal" motion) cannot swim. Using numerical simulations and theoretical calculations we show here that, in a fluctuating environment, reciprocal swimmers undergo, on time scales larger than that of their rotational diffusion, diffusive dynamics with enhanced diffusivities, possibly by orders of magnitude, above normal translational diffusion. Reciprocal actuation does therefore lead to a significant advantage over nonmotile behavior for small organisms such as marine bacteria.  相似文献   

3.
Modeling elasticity in crystal growth   总被引:2,自引:0,他引:2  
A new model of crystal growth is presented that describes the phenomena on atomic length and diffusive time scales. The former incorporates elastic and plastic deformation in a natural manner, and the latter enables access to time scales much larger than conventional atomic methods. The model is shown to be consistent with the predictions of Read and Shockley for grain boundary energy, and Matthews and Blakeslee for misfit dislocations in epitaxial growth.  相似文献   

4.
We study spontaneous pattern formation in a glass-forming nematic liquid crystal during the magnetically induced dynamic Fréedericksz transition. Pattern growth rates and wavelengths as functions of the magnetic field are extracted from optical transmission textures of thin planar cells. The characteristics of the observed stripe pattern can be related to viscoelastic parameters of the nematic by means of a linear stability analysis of director fluctuation modes. The viscous properties of the material allow to vary the time scales of the experiment with temperature by orders of magnitude, leaving the spatial structure of the pattern essentially unchanged. We find that the ratios of shear and rotational viscosity coefficients relevant for the pattern wavelength selection remain constant in the temperature range investigated, whereas their absolute values change by almost two orders. Received 23 November 2001 and Received in final form 19 April 2002  相似文献   

5.
We present a method for accelerated molecular-dynamics simulation in systems with rare-event dynamics that span a wide range of time scales. Using a variant of hyperdynamics, we detect, on the fly, groups of recurrent states connected by small energy barriers and we modify the potential-energy surface locally to consolidate them into large, coarse states. In this way, fast motion between recurrent states is treated within an equilibrium formalism and dynamics can be simulated over the longer time scale of the slow events. We apply the method to simulate cluster diffusion and the initial growth of Co on Cu(001),where time scales spanning more than 6 orders of magnitude are present, and show that the method correctly follows the slow events, so that much larger times can be simulated than with accelerated molecular dynamics alone.  相似文献   

6.
We study the folding kinetics of a three-helix bundle protein using a coarse polymer model. The folding dynamics can be accurately represented by one-dimensional diffusion along a reaction coordinate selected to capture the transition state. By varying the solvent friction, we show that position-dependent diffusion coefficients are determined by microscopic transitions on a rough energy landscape. A maximum in the folding rate at intermediate friction is explained by "Kramers turnover" in these microscopic dynamics that modulates the rate via the diffusion coefficient; overall folding remains diffusive even close to zero friction. For water friction, we find that the "attempt frequency" (or "speed limit") in a Kramers model of folding is about 2 micros-1, with an activation barrier of about 2kBT, and a folding transition path duration of approximately equal to 100 ns, 2 orders of magnitude less than the folding time of approximately equal to 10 micros.  相似文献   

7.
8.
Field-theoretic models, which replace interactions between polymers with interactions between polymers and one or more conjugate fields, offer a systematic framework for coarse-graining of complex fluids systems. While this approach has been used successfully to investigate a wide range of polymer formulations at equilibrium, field-theoretic models often fail to accurately capture the non-equilibrium behavior of polymers, especially in the early stages of phase separation. Here the “two-fluid” approach serves as a useful alternative, treating the motions of fluid components separately in order to incorporate asymmetries between polymer molecules. In this work we focus on the connection of these two theories, drawing upon the strengths of each of the approaches in order to couple polymer microstructure with the dynamics of the flow in a systematic way. For illustrative purposes we work with an inhomogeneous melt of elastic dumbbell polymers, though our methodology will apply more generally to a wide variety of inhomogeneous systems. First we derive the model, incorporating thermodynamic forces into a two-fluid model for the flow through the introduction of conjugate chemical potential and elastic strain fields for the polymer density and stress. The resulting equations are composed of a system of fourth order PDEs coupled with a non-linear, non-local optimization problem to determine the conjugate fields. The coupled system is severely stiff and with a high degree of computational complexity. Next, we overcome the formidable numerical challenges posed by the model by designing a robust semi-implicit method based on linear asymptotic behavior of the leading order terms at small scales, by exploiting the exponential structure of global (integral) operators, and by parallelizing the non-linear optimization problem. The semi-implicit method effectively removes the fourth order stability constraint associated with explicit methods and we observe only a first order time-step restriction. The algorithm for solving the non-linear optimization problem, which takes advantage of the form of the operators being optimized, reduces the overall simulation time by several orders of magnitude. We illustrate the methodology with several examples of phase separation in an initially quiescent flow.  相似文献   

9.
We study the relation between short-time vibrational modes and long-time relaxational dynamics in a kinetically constrained lattice gas with harmonic interactions between neighbouring particles. We find a correlation between the location of the low- (high-) frequency vibrational modes and regions of high (low) propensity for motion. This is similar to what was observed in continuous force systems, but our interpretation is different: in our case relaxation is due to localised excitations which propagate through the system; these localised excitations act as background disorder for the elastic network, giving rise to anomalous vibrational modes. Our results provide an example whereby a correlation between spatially extended low-frequency modes and high-propensity regions does not imply that relaxational dynamics originates in extended soft modes but rather belies their common origin. We consider other measures of elastic heterogeneity, such as non-affine displacement fields and mode localisation lengths, and discuss implications of our results to interpretations of dynamic heterogeneity more generally.  相似文献   

10.
Numerical schemes for systems with multiple spatio-temporal scales are investigated. The multiscale schemes use asymptotic results for this type of systems which guarantee the existence of an effective dynamics for some suitably defined modes varying slowly on the largest scales. The multiscale schemes are analyzed in general, then illustrated on a specific example of a moderately large deterministic system displaying chaotic behavior due to Lorenz. Issues like consistency, accuracy, and efficiency are discussed in detail. The role of possible hidden slow variables as well as additional effects arising on the diffusive time-scale are also investigated. As a byproduct we obtain a rather complete characterization of the effective dynamics in Lorenz model.  相似文献   

11.
《Nuclear Physics A》1998,641(3):335-354
Langevin equations are used to model many processes of physical interest, including low-energy nuclear collisions. In this paper we develop a general method for computing probabilities of very rare events (e.g. small fusion cross-sections) for processes described by Langevin dynamics. As we demonstrate with numerical examples as well as an exactly solvable model, our method can converge to the desired answer at a rate which is orders of magnitude faster than that achieved with direct simulations of the process in question.  相似文献   

12.
A new multiscale simulation method is formulated for the study of shocked materials. The method combines molecular dynamics and the Euler equations for compressible flow. Treatment of the difficult problem of the spontaneous formation of multiple shock waves due to material instabilities is enabled with this approach. The method allows the molecular dynamics simulation of the system under dynamical shock conditions for orders of magnitude longer time periods than is possible using the popular nonequilibrium molecular dynamics approach. An example calculation is given for a model potential for silicon in which a computational speedup of 10(5) is demonstrated. Results of these simulations are consistent with the recent experimental observation of an anomalously large elastic precursor on the nanosecond time scale.  相似文献   

13.
14.
We describe field-induced multiaxis rotations of colloids in a nematic liquid crystal. Anchoring of the nematic director to the colloidal platelet's surface and interplay of dielectric and elastic energies enable robust control over colloid orientation that cannot be achieved in isotropic liquids. Because of the anisotropy of the fluid and the platelike shape of particles, the colloids can be forced to rotate about four different rotational axes even for a fixed direction of the applied field. The time scale of these unexpected voltage-dependent dynamics varies over four orders of magnitude (10?2-102 s) and promises a number of novel electro-optic, photonic, and display applications.  相似文献   

15.
We report on a numerical study of quantum transport in disordered two dimensional graphene and graphene nanoribbons. By using the Kubo and the Landauer approaches, transport length scales in the diffusive (mean free path and charge mobilities) and localized regimes (localization lengths) are computed, assuming a short range disorder (Anderson-type). The electronic systems are found to undergo a conventional Anderson localization in the zero-temperature limit, in agreement with localization scaling theory. Localization lengths in weakly disordered ribbons are found to strongly fluctuate depending on their edge symmetry, but always remain several orders of magnitude smaller than those computed for 2D graphene for the same disorder strength. This pinpoints the role of transport dimensionality and edge effects.  相似文献   

16.
We present a new method which combines Car-Parrinello and Born-Oppenheimer molecular dynamics in order to accelerate density functional theory based ab initio simulations. Depending on the system a gain in efficiency of 1 to 2 orders of magnitude has been observed, which allows ab initio molecular dynamics of much larger time and length scales than previously thought feasible. It will be demonstrated that the dynamics is correctly reproduced and that high accuracy can be maintained throughout for systems ranging from insulators to semiconductors and even to metals in condensed phases. This development considerably extends the scope of ab initio simulations.  相似文献   

17.
We have studied the bulk viscosity of strange quark matter in the density dependent quark mass model (DDQM) and compared results with calculations done earlier in the MIT bag model where u, d masses were neglected and first order interactions were taken into account. We find that at low temperatures and high relative perturbations, the bulk viscosity is higher by 2 to 3 orders of magnitude while at low perturbations the enhancement is by 1–2 order of magnitude as compared to earlier results. Also the damping time is 2–3 orders of magnitude lower implying that the star reaches stability much earlier than in MIT bag model calculations.  相似文献   

18.
We describe a new method to measure the decorrelation rate of the optical coherence tomography (OCT) magnitude simultaneously in space and time. We measure the decorrelation rate of the OCT magnitude in a Fourier-domain OCT system for a large range of translational diffusion coefficients by varying the sphere diameter. The described method uses the sensitivity advantage of Fourier-domain OCT over time-domain OCT to increase the particle diffusion imaging speed by a factor of 200. By coherent gating, we reduce the contribution of multiple scattering to the detected signal, allowing a quantitative study of diffusive particle dynamics in high concentration samples. We demonstrate that this technique is well suited to image diffusive particle dynamics in samples with a complex geometry as we measure the morphology and diffusive particle dynamics simultaneously with both high spatial and high temporal resolution.  相似文献   

19.
Using ST-cut quartz crystal plates as an example, a new type of normal modes of acoustic vibrations is described. The modes propagate along the x axis with a velocity close or equal to that of longitudinal bulk waves propagating in the same direction and have a longitudinal component of elastic displacement no less than two orders of magnitude greater than the two other components (the shear-horizontal and shear-vertical ones) throughout the whole plate thickness. The domain of existence of the quasi-longitudinal modes consists of a set of limited zones that contain the “allowed” values of the plate thickness H/λ (H is the plate thickness and λ is the wavelength) and are separated by “forbidden” zones corresponding to common Lamb modes. The closeness (or coincidence) of the velocities of a quasi-longitudinal mode in the plate and a longitudinal bulk wave in an unbounded crystal is a necessary but not sufficient condition for the existence of the aforementioned type of modes in ST,x quartz.  相似文献   

20.
The effective elastic anharmonicity induced by exchange magnetoelastic interaction is investigated for easy plane antiferromagnets, in which an antiferromagnetic-ferromagnetic phase transition takes place. Near the transition point this anharmonicity can be manifested in nonlinear interactions of longitudinal acoustic modes, resulting in magnetoacoustic mode-frequency conversion effects. It is shown that these effects are amplified in the vicinity of the phase transition, because the effective third-order elastic constants increase by several orders of magnitude. The generation of longitudinal acoustic second harmonics is analyzed as an example. Fiz. Tverd. Tela (St. Petersburg) 39, 1432–1436 (August 1997)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号